

From Language Modeling to Grammar-Guided Code Sketch Generation

Alexey Svyatkovskiy

Microsoft Research, Data & Al

THE ML4Code LANDSCAPE

Introduction: Language Models of Code (I)

- Hindle et. al. "On the Naturalness of Software" (2012)
 - Consider programs as sequences of tokens
 - Use N-gram model to estimate how likely tokens are to follow each other
 - Assume Markov property
- Svyatkovskiy et. al. "IntelliCode Compose" (2020)
 - Programs as sequence of BPE subtokens
 - Pretrain a (relatively small capacity) transformer decoder-only model
 - Decode lines of code via beam search, use prefix trie-cache to bridge the perf gap
- Feng et. al, "CodeBERT: A Pretrained Model for Programming and NL" (2020)
 - Pretrain a transformer encoder via MLM+RTD
 - Code understanding tasks, NL-PL

Introduction: Language Models of Code (II)

 Chen et. al., "Evaluating Large Language Models Trained on Code" a.k.a "Codex paper" (2021)

6.3b

- GPT-style model
- Larger capacity model (up to 12 billion parameters)
- Longer sequences
- Clement et. al, "Long-range Modeling of Source Code Files with eWASH" (2021)
 - Solve problem of long-range modeling of source code
- Guo et. al., "Learning to Complete Code with Sketches" the "Grammformers" paper (2021)
 - Grammar-guided code generation
 - Avoid hallucinations by predicting sketches with "holes" non-terminals
- Future?
 - ChatGPT: LLM + RLHF finetuning

Limitations of Modern LMs of Code

- Lack of Interpretability: ML models may have issues with interpretability, making it difficult to reason about why a model is making certain predictions
- While LMs generate realistic-looking outputs, they are known to occasionally *"hallucinate"* generating plausible but incorrect content
- Uncertainty Quantification: specifically, a lack of ability to decline to make predictions when uncertain, outputting a hole, but continuing to generate around holes
- Syntactic correctness: LMs of code are commonly trained on partial code snippets which are not syntactically correct, as such it may generate syntactically incorrectly prediction

Programming Language Grammars (I)

- A grammar of a programming language formally specifies the syntax rules of that language. Grammars are commonly used in compilers, which translate code written in a particular language into executable form. They are also used in code editors and IDEs to enforce syntax rules and assist with code completion.
- A grammar typically consists of tuple (Σ, N, S, R):
 - Σ: a set of terminal symbols, which represent the basic building blocks of the language (e.g. keywords, variable names, operators)
 - N: a set of nonterminal symbols, which are placeholders for sequences of terminal symbols. We denote non-terminals as (NonTerminalName)
 - R: a set of productions, which specify the ways that nonterminal symbols can be replaced by sequences of terminal and/or nonterminal symbols.
 - S: a start symbol, which specifies the initial symbol in the grammar from which all derivations begin

Programming Language Grammars (II)

								101	01110/								
	if	($\langle Expr \rangle$)						$\langle \text{Stn} \rangle$	$ $ at \rangle				
	if	$\langle \overline{\langle} \rangle$	$\overline{\mathrm{Expr}}$	(Optr)	$\langle Expr \rangle$)						(Stn	at				
F	11	($\langle \mathrm{Id} \rangle$		$(\mathbf{E}_{\mathbf{A}\mathbf{D}\mathbf{I}})$	>						Gun					
	if	(-	X	$\langle Optr \rangle$	$\langle Expr \rangle$)						δ Stn	at)				
Let a set of the set o	1.T	(X	<u> </u>	(Expr)	,) (Stri	nt)				_
	if	è	x	>	$\frac{\langle \text{Lup} \rangle}{\langle \text{Num} \rangle}$	5						(Stn	nt)				
	if	\tilde{c}	v		q	Ś						(Stn	at				
$\langle \text{Stmt} \rangle \rightarrow \langle \text{Id} \rangle = \langle \text{Expr} \rangle$;		\tilde{c}	~		9	55	٢				/<	tmt	List\			<u> </u>	
$\langle \text{Stmt} \rangle \rightarrow \{ \langle \text{StmtList} \rangle \}$		$\frac{1}{2}$			0		l/c	Itant	tT:at		12	011101		Ctmt)		<u> </u> {	
$\langle \text{Stmt} \rangle \rightarrow \text{if} (\langle \text{Expr} \rangle) \langle \text{Stmt} \rangle$	11		X	1	9	1	[[()	Sum		Ĵ	
$\langle \text{StmtList} \rangle \rightarrow \langle \text{Stmt} \rangle$	11	(X	>	9	21			$\frac{\mathrm{mt}}{\mathrm{T}}$					Stmt		}	
$\langle \text{StmtList} \rangle \rightarrow \langle \text{StmtList} \rangle \langle \text{Stmt} \rangle$	if	(X	>	9		$\frac{\text{d}}{\text{d}}$	= <	$ Expr\rangle$;				Stmt		}	
$\langle \text{Dense} \rangle \rightarrow \langle \text{Dense} \rangle \langle \text{Dense} \rangle$	if	(X	>	9) {	x	= <	$\langle Expr \rangle$;				$ \text{Stmt} \rangle$		}	
$\langle \text{Expr} \rangle \rightarrow \langle \text{Id} \rangle$	if	(x	>	9		(x)	= <	$\langle Num \rangle$;				$ $ Stmt \rangle		}	
$\langle \text{Expr} \rangle \rightarrow \langle \text{Num} \rangle$	if	(x	>	9		x }	=	0	;			($\mathrm{Stmt}\rangle$		}	
$\langle \text{Expr} \rangle \rightarrow \langle \text{Expr} \rangle \langle \text{Optr} \rangle \langle \text{Expr} \rangle$	if	(x	>	9		x }	=	0	;	$\langle \mathrm{Id} \rangle$	=		$\langle Expr \rangle$; }	
$\langle \mathrm{Id} \rangle \rightarrow \mathbf{x}$	if	(x	>	9		x	=	0	;	v	_		$\langle Expr \rangle$; }	
$\langle \mathrm{Id} \rangle \rightarrow \mathrm{y}$	if	(x	>	9		x	=	0		v	= ('Expr'	$\overline{\langle \text{Optr} \rangle}$	$\langle Expr \rangle$: }	
$\langle Num \rangle \rightarrow 0$	if	\tilde{c}	x	>	9	51	(x	=	0		v	=	$\overline{\langle \mathrm{Id} \rangle}$	$\langle \text{Optr} \rangle$	$\langle Expr \rangle$	1	
$\langle Num \rangle \rightarrow 1$	if	\tilde{c}	v	S.	Q	Ś	(** (••	_	0	•	J			$-\frac{\langle Optr \rangle}{\langle Optr \rangle}$	(Expr)	, j . l	
$\langle Num \rangle \rightarrow 9$		$\frac{1}{2}$	-A-		0		[0	,	У		У		(Expr/	, J .]	
$\langle \text{Optr} \rangle \rightarrow >$	11		X		3			_	0	2	У	_	У	т	$\frac{\langle \mathbf{E} \mathbf{x} \mathbf{p} \mathbf{r} \rangle}{\langle \mathbf{N} \mathbf{r} \mathbf{x} \mathbf{r} \rangle}$	<u>, j</u>	
$\langle \text{Optr} \rangle \rightarrow +$	11		X	>	9	1	(X	=	U	,	У	=	У	+	(mum)	; }	
	if	(х	>	9		{ x	=	0	;	У	=	У	+	1	; }	

(Stmt)

https://en.wikipedia.org/wiki/Context-free_grammar

$$r = \boxtimes * (foo(\boxtimes))$$

Grammformers – neural model

Training Grammformers

$$\mathcal{L}_{\text{pre, e}}\left(\mathbf{x}^{(t)}, (\mathbf{u}_{\otimes i}^{(t)})_{i\in\widetilde{N}(\mathbf{x}^{(t)})}^{*}\right) = \frac{1}{|\widetilde{N}(\mathbf{x}^{(t)})|} \cdot \sum_{i\in\widetilde{N}(\mathbf{x}^{(t)})} -\log P_e\left((\mathbf{u}_{\otimes i^{(t)}}^{(t)})^{*} \mid \mathbf{x}^{(t)}, i\right)$$

Training Grammformers

$$\mathcal{L}_{\text{train}}(\mathbf{x}_0, \mathbf{x}^*) = \left(r(\mathbf{x}_{\text{out}}, \mathbf{x}^*) - \tilde{r}(\mathbf{x}_0) \right) \sum_{t=0}^T \left(-\log P_s(i_t | \mathbf{x}_t) - \mathbb{I}(i_t \neq \mathbf{0}) \log P_e(\hat{\mathbf{y}}_{t \otimes i_t} | \mathbf{x}_t, i_t) \right)$$

Rennie, et al. 2017

The Trade-offs in Sketch Generation

Accurate

Predict a sketch that matches the ground-truth.

```
ap.add_argument("--foo", action="store_true")
ap.add_argument(⊠, action="store_false")
ap.add_argument(⊠, required=⊠)
```

Specific

Predict a sketch that is as concrete as possible.

ap.add_argument(⊠, action="store_true")
ap.add_argument(⊠, action= ⊠)
ap.add_argument(⊠, ⊠)
ap.add_argument(⊠)
ap.⊠(⊠, action="store_true")
⊠.add_argument(⊠, action="store_true")
⊠.⊠(⊠)

Evaluation — Regex Accuracy

$$REGEXACC(\hat{s}, s^*) \triangleq \frac{nTerm(\hat{s})}{nTerm(s^*)} \cdot matches(toRegex(\hat{s}), s^*)$$

s* = ap.add_argument('--experimental', action="store_true")

ŝ

		Regex Accuracy
ap.add_argument(\boxtimes ,	<pre>action="store_true")</pre>	9/10
ap.add_argument(⊠,	action= ⊠)	8/10
ap.add_argument(⊠,	⊠)	6/10
ap.add_argument(⊠,	<pre>action="store_false")</pre>	0
ap.add_argument(\boxtimes ,	required=⊠)	0

Evaluation — REWARD

$$r(\hat{\mathbf{y}}, \mathbf{y}^*) = \frac{1}{2} \left(\text{REGEXACC}(\hat{\mathbf{y}}, \mathbf{y}^*) + \text{ROUGE}_{F1}(\text{ERASEHOLES}(\hat{\mathbf{y}}, \mathbf{y}^*)) \right)$$

Evaluation

C#

Model	RegexAcc@ 1	RegexAcc @5	Avg Gen Length				
L→R	42%	47%	7.1				
L→R+⊘	45%	54%	5.3				
LM+⊠	44%	54%	6.3				
Grammformer	47%	59%	7.5				
• 100% correct but with 47% of tokens specified.							

Evaluation

Evaluation

Sketch Completion

```
1 import argparse
2
3 ap = argparse.ArgumentParser()
4 ap.add_argument("--release", action="store_true")
5 ap.add_argument("--prerelease", action="store_true")
6
7 ap.add_argument(\vec{1}, action="store_true")
8
```

Learning to Generate Code

Sketches. Guo, Svyatkovskiy, Yin,

Duan, Brockschmidt, Allamanis. 2021

Copilot/OpenAl Codex

1

Grammformer

```
import argparse
2
    ap = argparse.ArgumentParser()
    ap.add_argument("--release", action="store_true")
    ap.add_argument("--prerelease", action="store_true")
5
    ap.add_argument("--version", action="store_true")
6
7
```

```
import argparse
2
   ap = argparse.ArgumentParser()
3
   ap.add_argument("--release", action="store_true")
   ap.add_argument("--prerelease", action="store_true")
5
6
   ap.add_argument(⊠, action="store_true")
7
8
```

```
Ground Truth:
ap.add_argument("—-experimental", action="store_true")
```

Copilot/OpenAl Codex

```
import sys
 1
     import os
 2
 3
     import platform
 4
     if platform.system() == 'Linux':
 5
 6
     os.system('clear')
     elif platform.system() == 'Windows':
 7
     os.system('cls')
8
 9
     target = sys.argv[1]
10
     print "Target: " + target +/-
11
```

Grammformer

```
1
    import sys
   import os
 2
 3
    import platform
 4
 5 ~ if platform.system() == "Linux":
    os.system('clear')
 6
 7 ~ elif platform.system() == "Windows":
 8
    os.system('cls')
 9
    target = sys.argv[1]
10
11
    ⊠ = sys.argv[2]
```

Thank You!

Questions

Collaborators:

- Miltos Allamanis, Mark Brockshmidt, Google Research
- Daya Guo, Nan Duan, Microsoft Research Asia