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Introduction: Language Models of Code (I)
• Hindle et. al. “On the Naturalness of Software” (2012)

• Consider programs as sequences of tokens
• Use N-gram model to estimate how likely tokens are to follow each other
• Assume Markov property

• Svyatkovskiy et. al. “IntelliCode Compose” (2020)
• Programs as sequence of BPE subtokens
• Pretrain a (relatively small capacity) transformer decoder-only model
• Decode lines of code via beam search, use prefix trie-cache to bridge the perf gap

• Feng et. al, “CodeBERT: A Pretrained Model for Programming and NL” (2020)
• Pretrain a transformer encoder via MLM+RTD
• Code understanding tasks, NL-PL



Introduction: Language Models of Code (II)
• Chen et. al., “Evaluating Large Language Models Trained on Code” a.k.a “Codex 

paper” (2021)
• GPT-style model 
• Larger capacity model (up to 12 billion parameters)
• Longer sequences

• Clement et. al, “Long-range Modeling of Source Code Files with eWASH” (2021)
• Solve problem of long-range modeling of source code

• Guo et. al., “Learning to Complete Code with Sketches” the “Grammformers” 
paper (2021)
• Grammar-guided code generation
• Avoid hallucinations by predicting sketches with “holes” – non-terminals

• Future? 
• ChatGPT: LLM + RLHF finetuning



Limitations of Modern LMs of Code
• Lack of Interpretability: ML models may have issues with 

interpretability, making it difficult to reason about why a model is 
making certain predictions  
• While LMs generate realistic-looking outputs, they are known to 

occasionally “hallucinate” generating plausible but incorrect content
• Uncertainty Quantification: specifically, a lack of ability to decline to 

make predictions when uncertain, outputting a hole, but continuing to 
generate around holes   
• Syntactic correctness: LMs of code are commonly trained on partial 

code snippets which are not syntactically correct, as such it may 
generate syntactically incorrectly prediction



Programming Language Grammars (I)
• A grammar of a programming language formally specifies the syntax 

rules of that language. Grammars are commonly used in compilers, 
which translate code written in a particular language into executable 
form. They are also used in code editors and IDEs to enforce syntax 
rules and assist with code completion.
• A grammar typically consists of tuple (Σ, N, S, R):
• Σ: a set of terminal symbols, which represent the basic building blocks of the 

language (e.g. keywords, variable names, operators)
• N: a set of nonterminal symbols, which are placeholders for sequences of 

terminal symbols. We denote non-terminals as ⟨NonTerminalName⟩
• R: a set of productions, which specify the ways that nonterminal symbols can 

be replaced by sequences of terminal and/or nonterminal symbols.
• S: a start symbol, which specifies the initial symbol in the grammar from 

which all derivations begin



Programming Language Grammars (II)

https://en.wikipedia.org/wiki/Context-free_grammar
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Grammformers – neural model
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Training Grammformers

› Pretraining
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Training Grammformers
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› Fine Tuning

Rennie, et al. 2017



The Trade-offs in Sketch Generation

Accurate
Predict a sketch that matches the 
ground-truth.

Specific
Predict a sketch that is as concrete as 
possible.
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Evaluation ― Regex Accuracy
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Evaluation ― REWARD



Evaluation

Model RegexAcc@
1

RegexAcc
@5

Avg Gen 
Length

LàR 42% 47% 7.1

LàR+⦸ 45% 54% 5.3

LM+▧ 44% 54% 6.3

Grammformer 47% 59% 7.5

C#

• 100% correct but with 
47% of tokens specified.
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Sketch 
Completion

📄 Learning to Generate Code 

Sketches. Guo, Svyatkovskiy, Yin, 

Duan, Brockschmidt, Allamanis. 2021



GrammformerCopilot/OpenAI Codex

Ground Truth:
ap.add_argument(“—-experimental”, action=“store_true”)



Examples

GrammformerCopilot/OpenAI Codex

Ground Truth:
ID = sys.argv[2]



Thank You!

Questions
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