
From Language Modeling to Grammar-Guided
Code Sketch Generation

THE ML4Code LANDSCAPE

Code Generation

Code
Completion

Program
Synthesis

Semantic
Parsing

Program
Analysis

Specification
Tuning

Specification
Inference

Black-Box
Analysis
Learning

…

Introduction: Language Models of Code (I)
• Hindle et. al. “On the Naturalness of Software” (2012)

• Consider programs as sequences of tokens
• Use N-gram model to estimate how likely tokens are to follow each other
• Assume Markov property

• Svyatkovskiy et. al. “IntelliCode Compose” (2020)
• Programs as sequence of BPE subtokens
• Pretrain a (relatively small capacity) transformer decoder-only model
• Decode lines of code via beam search, use prefix trie-cache to bridge the perf gap

• Feng et. al, “CodeBERT: A Pretrained Model for Programming and NL” (2020)
• Pretrain a transformer encoder via MLM+RTD
• Code understanding tasks, NL-PL

Introduction: Language Models of Code (II)
• Chen et. al., “Evaluating Large Language Models Trained on Code” a.k.a “Codex

paper” (2021)
• GPT-style model
• Larger capacity model (up to 12 billion parameters)
• Longer sequences

• Clement et. al, “Long-range Modeling of Source Code Files with eWASH” (2021)
• Solve problem of long-range modeling of source code

• Guo et. al., “Learning to Complete Code with Sketches” the “Grammformers”
paper (2021)
• Grammar-guided code generation
• Avoid hallucinations by predicting sketches with “holes” – non-terminals

• Future?
• ChatGPT: LLM + RLHF finetuning

Limitations of Modern LMs of Code
• Lack of Interpretability: ML models may have issues with

interpretability, making it difficult to reason about why a model is
making certain predictions
• While LMs generate realistic-looking outputs, they are known to

occasionally “hallucinate” generating plausible but incorrect content
• Uncertainty Quantification: specifically, a lack of ability to decline to

make predictions when uncertain, outputting a hole, but continuing to
generate around holes
• Syntactic correctness: LMs of code are commonly trained on partial

code snippets which are not syntactically correct, as such it may
generate syntactically incorrectly prediction

Programming Language Grammars (I)
• A grammar of a programming language formally specifies the syntax

rules of that language. Grammars are commonly used in compilers,
which translate code written in a particular language into executable
form. They are also used in code editors and IDEs to enforce syntax
rules and assist with code completion.
• A grammar typically consists of tuple (Σ, N, S, R):
• Σ: a set of terminal symbols, which represent the basic building blocks of the

language (e.g. keywords, variable names, operators)
• N: a set of nonterminal symbols, which are placeholders for sequences of

terminal symbols. We denote non-terminals as ⟨NonTerminalName⟩
• R: a set of productions, which specify the ways that nonterminal symbols can

be replaced by sequences of terminal and/or nonterminal symbols.
• S: a start symbol, which specifies the initial symbol in the grammar from

which all derivations begin

Programming Language Grammars (II)

https://en.wikipedia.org/wiki/Context-free_grammar

r = ⟨Expr⟩

⟨Expr⟩

*⟨Expr⟩ ⟨ParenthesizedExpr⟩

r =

⟨Expr⟩

*⟨Expr⟩ ⟨ParenthesizedExpr⟩

⟨ParenthesizedExpr⟩

()⟨Expr⟩

r =

⟨Expr⟩

*⟨Expr⟩ ParenthesizedExpr
⟨ParenthesizedExpr⟩

()⟨Expr⟩

⟨Expr⟩

⟨Identifier⟩ ()⟨ArgList⟩

r =

⟨Expr⟩

* ParenthesizedExpr
⟨ParenthesizedExpr⟩

()Expr
⟨Expr⟩

()foo

r = * ()()foo

r = ▧ * (foo(▧))

Grammformers – neural model

Encoder

𝑥!,#, 𝑥!,$, ⋯ , 𝑥!,%

Decoder

𝑃! 𝑦!,#, 𝑦!,$, ⋯ , 𝑦!,&

Expand

𝑃'

r = * ()

Expr

⟨Identifier⟩ - ⟨Expr⟩

⟨Expr⟩ ⟨Expr⟩

⟨ Expr ⟩

Training Grammformers

› Pretraining

Encoder

𝑥#,%, 𝑥#,&, ⋯ , 𝑥#,'

Decoder

𝑦#,%, 𝑦#,&, ⋯ , 𝑦#,(

Expand
𝑃)

r = * ()

Expr

⟨Identifier⟩ - ⟨Expr⟩

⟨Expr⟩ ⟨Expr⟩

⟨ Expr ⟩

Decoder
𝑃)

𝑦#,%, 𝑦#,&, ⋯ , 𝑦#,(

Expr

⟨Expr⟩ (⟨Arg⟩)

Expand
⟨ Expr ⟩

Training Grammformers

Encoder

𝑥#,%, 𝑥#,&, ⋯ , 𝑥#,'

Decoder

𝑃! 𝑦#,%, 𝑦#,&, ⋯ , 𝑦#,(
Expand

𝑃)

r = * ()

Expr

⟨Identifier⟩ - ⟨Expr⟩

⟨Expr⟩ ⟨Expr⟩

⟨ Expr ⟩

› Fine Tuning

Rennie, et al. 2017

The Trade-offs in Sketch Generation

Accurate
Predict a sketch that matches the
ground-truth.

Specific
Predict a sketch that is as concrete as
possible.

ap.add_argument(▧, action=“store_true”)

ap.add_argument(▧, action= ▧)

ap.add_argument(▧, ▧)

ap.add_argument(▧)

ap.▧(▧, action=“store_true”)

▧.add_argument(▧, action=“store_true”)

▧.▧(▧)

ap.add_argument(“--foo”, action=“store_true”)

ap.add_argument(▧, action=“store_false”)

ap.add_argument(▧, required=▧)

Evaluation ― Regex Accuracy

9/10

8/10

6/10

0

0

𝒔∗ = ap.add_argument(‘--experimental’, action=“store_true”)

(𝒔

ap.add_argument(▧, action=“store_true”)

ap.add_argument(▧, action= ▧)

ap.add_argument(▧, ▧)

ap.add_argument(▧, action=“store_false”)

ap.add_argument(▧, required=▧)

Regex Accuracy

Evaluation ― REWARD

Evaluation

Model RegexAcc@
1

RegexAcc
@5

Avg Gen
Length

LàR 42% 47% 7.1

LàR+⦸ 45% 54% 5.3

LM+▧ 44% 54% 6.3

Grammformer 47% 59% 7.5

C#

• 100% correct but with
47% of tokens specified.

Evaluation

Evaluation

Sketch
Completion

📄 Learning to Generate Code

Sketches. Guo, Svyatkovskiy, Yin,

Duan, Brockschmidt, Allamanis. 2021

GrammformerCopilot/OpenAI Codex

Ground Truth:
ap.add_argument(“—-experimental”, action=“store_true”)

Examples

GrammformerCopilot/OpenAI Codex

Ground Truth:
ID = sys.argv[2]

Thank You!

Questions

Collaborators:

• Miltos Allamanis, Mark Brockshmidt, Google Research
• Daya Guo, Nan Duan, Microsoft Research Asia

