
Metamath and Metamath Zero

Mario Carneiro

Carnegie Mellon University

February 7, 2023

1 / 46

Who am I?

Github: digama0
Zulip: Mario Carneiro

▶ Postdoc in Logic at CMU
▶ Proof engineering since 2013
▶ Metamath (maintainer)
▶ Lean 3, Lean 4 mathlib (maintainer)
▶ Dabbled in Isabelle, HOL Light, Coq, Mizar
▶ Metamath Zero (author)

▶ Proved 37 of Freek’s 100 theorems list in Metamath
▶ Lots of library code in set.mm and mathlib
▶ My PhD thesis was about Metamath Zero
▶ Say hi at https://leanprover.zulipchat.com

2 / 46

https://leanprover.zulipchat.com

Part I: Metamath

3 / 46

Metamath is:

▶ A computer language for writing mathematical proofs
▶ A program metamath.exe to verify proofs in the Metamath language
▶ A library of completed proofs in a wide variety of axiomatic systems
▶ set.mm: Over 40000 proofs deriving consequences of ZFC

▶ Covers material in set theory, category theory, real analysis, calculus, number
theory, algebra, topology, linear algebra, lattice theory, graph theory

▶ 74 from Freek Wiedijk’s 100 theorems list, which puts it 4th on the list behind HOL
Light, Isabelle, and Coq

▶ iset.mm: 10000 proofs in intuitionistic ZF
▶ nf.mm: 5900 proofs in NF set theory
▶ ql.mm: 1100 proofs in quantum logic
▶ Other databases: hol.mm, dtt.mm, peano.mm, miu.mm

4 / 46

Metamath looks like: (set.mm)

5 / 46

Metamath looks like: (mmj2)

6 / 46

Metamath looks like: (MPE)

7 / 46

Metamath’s good ideas

Metamath is not the most popular theorem prover,
but it has some good ideas that are not shared with its contemporaries.

What makes Metamath unique?

8 / 46

Metamath’s good ideas

▶ Separate proof authoring from proof checking

▶ Have a simple spec for the logical core

9 / 46

Metamath’s good ideas

▶ Separate proof authoring from proof checking

▶ Have a simple spec for the logical core

9 / 46

Separate proof authoring from proof checking

▶ Interactive theorem provers need to support two activities:

▶ Writing / authoring proofs
▶ Checking proofs

▶ The design criteria for these two are completely different
▶ Writing happens once, checking happens many times
▶ Checking is often performed as part of CI
▶ Writing involves human interaction and creativity

▶ Writing needs a proof assistant, proof checking needs a kernel
▶ A good proof assistant is big and complex to give a good user experience
▶ A good kernel is small and trustworthy

(and ideally fast and not resource-intensive)

10 / 46

Separate proof authoring from proof checking

▶ Interactive theorem provers need to support two activities:
▶ Writing / authoring proofs

▶ Checking proofs

▶ The design criteria for these two are completely different
▶ Writing happens once, checking happens many times
▶ Checking is often performed as part of CI
▶ Writing involves human interaction and creativity

▶ Writing needs a proof assistant, proof checking needs a kernel
▶ A good proof assistant is big and complex to give a good user experience
▶ A good kernel is small and trustworthy

(and ideally fast and not resource-intensive)

10 / 46

Separate proof authoring from proof checking

▶ Interactive theorem provers need to support two activities:
▶ Writing / authoring proofs
▶ Checking proofs

▶ The design criteria for these two are completely different
▶ Writing happens once, checking happens many times
▶ Checking is often performed as part of CI
▶ Writing involves human interaction and creativity

▶ Writing needs a proof assistant, proof checking needs a kernel
▶ A good proof assistant is big and complex to give a good user experience
▶ A good kernel is small and trustworthy

(and ideally fast and not resource-intensive)

10 / 46

Separate proof authoring from proof checking

▶ Interactive theorem provers need to support two activities:
▶ Writing / authoring proofs
▶ Checking proofs

▶ The design criteria for these two are completely different

▶ Writing happens once, checking happens many times
▶ Checking is often performed as part of CI
▶ Writing involves human interaction and creativity

▶ Writing needs a proof assistant, proof checking needs a kernel
▶ A good proof assistant is big and complex to give a good user experience
▶ A good kernel is small and trustworthy

(and ideally fast and not resource-intensive)

10 / 46

Separate proof authoring from proof checking

▶ Interactive theorem provers need to support two activities:
▶ Writing / authoring proofs
▶ Checking proofs

▶ The design criteria for these two are completely different
▶ Writing happens once, checking happens many times

▶ Checking is often performed as part of CI
▶ Writing involves human interaction and creativity

▶ Writing needs a proof assistant, proof checking needs a kernel
▶ A good proof assistant is big and complex to give a good user experience
▶ A good kernel is small and trustworthy

(and ideally fast and not resource-intensive)

10 / 46

Separate proof authoring from proof checking

▶ Interactive theorem provers need to support two activities:
▶ Writing / authoring proofs
▶ Checking proofs

▶ The design criteria for these two are completely different
▶ Writing happens once, checking happens many times
▶ Checking is often performed as part of CI

▶ Writing involves human interaction and creativity

▶ Writing needs a proof assistant, proof checking needs a kernel
▶ A good proof assistant is big and complex to give a good user experience
▶ A good kernel is small and trustworthy

(and ideally fast and not resource-intensive)

10 / 46

Separate proof authoring from proof checking

▶ Interactive theorem provers need to support two activities:
▶ Writing / authoring proofs
▶ Checking proofs

▶ The design criteria for these two are completely different
▶ Writing happens once, checking happens many times
▶ Checking is often performed as part of CI
▶ Writing involves human interaction and creativity

▶ Writing needs a proof assistant, proof checking needs a kernel
▶ A good proof assistant is big and complex to give a good user experience
▶ A good kernel is small and trustworthy

(and ideally fast and not resource-intensive)

10 / 46

Separate proof authoring from proof checking

▶ Interactive theorem provers need to support two activities:
▶ Writing / authoring proofs
▶ Checking proofs

▶ The design criteria for these two are completely different
▶ Writing happens once, checking happens many times
▶ Checking is often performed as part of CI
▶ Writing involves human interaction and creativity

▶ Writing needs a proof assistant, proof checking needs a kernel

▶ A good proof assistant is big and complex to give a good user experience
▶ A good kernel is small and trustworthy

(and ideally fast and not resource-intensive)

10 / 46

Separate proof authoring from proof checking

▶ Interactive theorem provers need to support two activities:
▶ Writing / authoring proofs
▶ Checking proofs

▶ The design criteria for these two are completely different
▶ Writing happens once, checking happens many times
▶ Checking is often performed as part of CI
▶ Writing involves human interaction and creativity

▶ Writing needs a proof assistant, proof checking needs a kernel
▶ A good proof assistant is big and complex to give a good user experience

▶ A good kernel is small and trustworthy
(and ideally fast and not resource-intensive)

10 / 46

Separate proof authoring from proof checking

▶ Interactive theorem provers need to support two activities:
▶ Writing / authoring proofs
▶ Checking proofs

▶ The design criteria for these two are completely different
▶ Writing happens once, checking happens many times
▶ Checking is often performed as part of CI
▶ Writing involves human interaction and creativity

▶ Writing needs a proof assistant, proof checking needs a kernel
▶ A good proof assistant is big and complex to give a good user experience
▶ A good kernel is small and trustworthy

(and ideally fast and not resource-intensive)

10 / 46

Separate proof authoring from proof checking

▶ Interactive theorem provers need to support two activities:
▶ Writing / authoring proofs
▶ Checking proofs

▶ The design criteria for these two are completely different
▶ Writing happens once, checking happens many times
▶ Checking is often performed as part of CI
▶ Writing involves human interaction and creativity

▶ Writing needs a proof assistant, proof checking needs a kernel
▶ A good proof assistant is big and complex to give a good user experience
▶ A good kernel is small and trustworthy

(and ideally fast and not resource-intensive)

10 / 46

Separate proof authoring from proof checking

▶ Metamath stores proofs, not proof scripts

▶ Checking metamath proofs is massively faster than
checking Lean, Coq, Isabelle, HOL Light proofs
▶ The classic verifier metamath.exe checks set.mm, a

library on the same order of magnitude as Lean
mathlib, in 8 seconds

▶ An optimized metamath verifier has achieved the
same feat in 0.9 seconds

11 / 46

Separate proof authoring from proof checking

▶ Metamath stores proofs, not proof scripts

▶ Checking metamath proofs is massively faster than
checking Lean, Coq, Isabelle, HOL Light proofs
▶ The classic verifier metamath.exe checks set.mm, a

library on the same order of magnitude as Lean
mathlib, in 8 seconds

▶ An optimized metamath verifier has achieved the
same feat in 0.9 seconds

11 / 46

Separate proof authoring from proof checking

▶ Metamath stores proofs, not proof scripts

▶ Checking metamath proofs is massively faster than
checking Lean, Coq, Isabelle, HOL Light proofs
▶ The classic verifier metamath.exe checks set.mm, a

library on the same order of magnitude as Lean
mathlib, in 8 seconds

▶ An optimized metamath verifier has achieved the
same feat in 0.9 seconds

11 / 46

Metamath’s good ideas

▶ Separate proof authoring from proof checking

▶ Have a simple spec for the logical core

12 / 46

Have a simple spec for the logical core

▶ Metamath has a prose specification
in the Metamath book

▶ The full spec is 28 pages (with lots
of explanation and examples)

▶ There is an emphasis on parsimony

▶ The HTML documentation is full of
pages of introductory material
which assumes no mathematical
background

13 / 46

Have a simple spec for the logical core

▶ Metamath has a prose specification
in the Metamath book
▶ The full spec is 28 pages (with lots

of explanation and examples)

▶ There is an emphasis on parsimony

▶ The HTML documentation is full of
pages of introductory material
which assumes no mathematical
background

13 / 46

Have a simple spec for the logical core

▶ Metamath has a prose specification
in the Metamath book
▶ The full spec is 28 pages (with lots

of explanation and examples)

▶ There is an emphasis on parsimony

▶ The HTML documentation is full of
pages of introductory material
which assumes no mathematical
background

13 / 46

Have a simple spec for the logical core

▶ Metamath has a prose specification
in the Metamath book
▶ The full spec is 28 pages (with lots

of explanation and examples)

▶ There is an emphasis on parsimony

▶ The HTML documentation is full of
pages of introductory material
which assumes no mathematical
background

13 / 46

Have a simple spec for the logical core

▶ Consequence: Many verifiers

▶ There are 19 known verifiers
▶ written in C, C++, C#, Rust, Lua, Haskell, Python, Igor, JavaScript,

Mathematica, Julia, Scala, Java, Zig, Lean 4
▶ ...and Turing Machine

▶ A metamath verifier was adapted to prove the best known lower bound on the
smallest unprovable-in-ZFC busy beaver number

▶ Many verifiers are tiny, and some are fast

▶ There are also multiple proof assistants
▶ The main ones in use are MM-PA and mmj2, and another one (metamath-knife) is in

development

▶ Metamath has also been used for machine learning (Holophrasm, GPT-f)

14 / 46

Have a simple spec for the logical core

▶ Consequence: Many verifiers
▶ There are 19 known verifiers

▶ written in C, C++, C#, Rust, Lua, Haskell, Python, Igor, JavaScript,
Mathematica, Julia, Scala, Java, Zig, Lean 4

▶ ...and Turing Machine
▶ A metamath verifier was adapted to prove the best known lower bound on the

smallest unprovable-in-ZFC busy beaver number

▶ Many verifiers are tiny, and some are fast

▶ There are also multiple proof assistants
▶ The main ones in use are MM-PA and mmj2, and another one (metamath-knife) is in

development

▶ Metamath has also been used for machine learning (Holophrasm, GPT-f)

14 / 46

Have a simple spec for the logical core

▶ Consequence: Many verifiers
▶ There are 19 known verifiers
▶ written in C, C++, C#, Rust, Lua, Haskell, Python, Igor, JavaScript,

Mathematica, Julia, Scala, Java, Zig, Lean 4

▶ ...and Turing Machine
▶ A metamath verifier was adapted to prove the best known lower bound on the

smallest unprovable-in-ZFC busy beaver number

▶ Many verifiers are tiny, and some are fast

▶ There are also multiple proof assistants
▶ The main ones in use are MM-PA and mmj2, and another one (metamath-knife) is in

development

▶ Metamath has also been used for machine learning (Holophrasm, GPT-f)

14 / 46

Have a simple spec for the logical core

▶ Consequence: Many verifiers
▶ There are 19 known verifiers
▶ written in C, C++, C#, Rust, Lua, Haskell, Python, Igor, JavaScript,

Mathematica, Julia, Scala, Java, Zig, Lean 4
▶ ...and Turing Machine

▶ A metamath verifier was adapted to prove the best known lower bound on the
smallest unprovable-in-ZFC busy beaver number

▶ Many verifiers are tiny, and some are fast

▶ There are also multiple proof assistants
▶ The main ones in use are MM-PA and mmj2, and another one (metamath-knife) is in

development

▶ Metamath has also been used for machine learning (Holophrasm, GPT-f)

14 / 46

Have a simple spec for the logical core
▶ Consequence: Many verifiers
▶ There are 19 known verifiers
▶ written in C, C++, C#, Rust, Lua, Haskell, Python, Igor, JavaScript,

Mathematica, Julia, Scala, Java, Zig, Lean 4
▶ ...and Turing Machine

▶ A metamath verifier was adapted to prove the best known lower bound on the
smallest unprovable-in-ZFC busy beaver number1

▶ Many verifiers are tiny, and some are fast

▶ There are also multiple proof assistants
▶ The main ones in use are MM-PA and mmj2, and another one (metamath-knife) is in

development

▶ Metamath has also been used for machine learning (Holophrasm, GPT-f)

1https://github.com/sorear/metamath-turing-machines
14 / 46

https://github.com/sorear/metamath-turing-machines

Have a simple spec for the logical core
▶ Consequence: Many verifiers
▶ There are 19 known verifiers
▶ written in C, C++, C#, Rust, Lua, Haskell, Python, Igor, JavaScript,

Mathematica, Julia, Scala, Java, Zig, Lean 4
▶ ...and Turing Machine

▶ A metamath verifier was adapted to prove the best known lower bound on the
smallest unprovable-in-ZFC busy beaver number1

▶ Many verifiers are tiny, and some are fast

▶ There are also multiple proof assistants
▶ The main ones in use are MM-PA and mmj2, and another one (metamath-knife) is in

development

▶ Metamath has also been used for machine learning (Holophrasm, GPT-f)

1https://github.com/sorear/metamath-turing-machines
14 / 46

https://github.com/sorear/metamath-turing-machines

Have a simple spec for the logical core
▶ Consequence: Many verifiers
▶ There are 19 known verifiers
▶ written in C, C++, C#, Rust, Lua, Haskell, Python, Igor, JavaScript,

Mathematica, Julia, Scala, Java, Zig, Lean 4
▶ ...and Turing Machine

▶ A metamath verifier was adapted to prove the best known lower bound on the
smallest unprovable-in-ZFC busy beaver number1

▶ Many verifiers are tiny, and some are fast

▶ There are also multiple proof assistants

▶ The main ones in use are MM-PA and mmj2, and another one (metamath-knife) is in
development

▶ Metamath has also been used for machine learning (Holophrasm, GPT-f)

1https://github.com/sorear/metamath-turing-machines
14 / 46

https://github.com/sorear/metamath-turing-machines

Have a simple spec for the logical core
▶ Consequence: Many verifiers
▶ There are 19 known verifiers
▶ written in C, C++, C#, Rust, Lua, Haskell, Python, Igor, JavaScript,

Mathematica, Julia, Scala, Java, Zig, Lean 4
▶ ...and Turing Machine

▶ A metamath verifier was adapted to prove the best known lower bound on the
smallest unprovable-in-ZFC busy beaver number1

▶ Many verifiers are tiny, and some are fast

▶ There are also multiple proof assistants
▶ The main ones in use are MM-PA and mmj2, and another one (metamath-knife) is in

development

▶ Metamath has also been used for machine learning (Holophrasm, GPT-f)

1https://github.com/sorear/metamath-turing-machines
14 / 46

https://github.com/sorear/metamath-turing-machines

Have a simple spec for the logical core
▶ Consequence: Many verifiers
▶ There are 19 known verifiers
▶ written in C, C++, C#, Rust, Lua, Haskell, Python, Igor, JavaScript,

Mathematica, Julia, Scala, Java, Zig, Lean 4
▶ ...and Turing Machine

▶ A metamath verifier was adapted to prove the best known lower bound on the
smallest unprovable-in-ZFC busy beaver number1

▶ Many verifiers are tiny, and some are fast

▶ There are also multiple proof assistants
▶ The main ones in use are MM-PA and mmj2, and another one (metamath-knife) is in

development

▶ Metamath has also been used for machine learning (Holophrasm, GPT-f)

1https://github.com/sorear/metamath-turing-machines
14 / 46

https://github.com/sorear/metamath-turing-machines

Metamath for AI/ML/ATP applications

▶ Metamath is a very friendly language for bulk processing, because it has such
a simple grammar and few core concepts
▶ In many cases you can get relevant and accurate information about theorem

structure using regexes
▶ There is only one kind of proof step (a theorem application), so proofs are just

trees of applications and verification is uniform

▶ It also has a large body of human-curated mathematics, which is good for
training and testing automated provers

▶ Verification and processing is quite fast, so the bottleneck is usually the
external processing (the ATP, ML training etc)

15 / 46

Part II: Metamath Zero

16 / 46

Deficiencies of Metamath

▶ Metamath tries to simultaneously serve the human
reader and the computer verifier, but they have
divergent needs

▶ The big block of compressed proof text is very
off-putting for newcomers, and not great for source
control either

▶ In practice you need a tool to read proofs

▶ Metamath automation is decentralized
▶ This is nice in principle, but in practice most people

won’t be writing their own proof assistant
▶ Metamath has a reputation for having no automation

as a result
▶ Existing MM proof assistants are certainly lacking in

small scale automation compared to HOL light,
Isabelle, Coq, Lean

17 / 46

Deficiencies of Metamath

▶ Metamath tries to simultaneously serve the human
reader and the computer verifier, but they have
divergent needs
▶ The big block of compressed proof text is very

off-putting for newcomers, and not great for source
control either

▶ In practice you need a tool to read proofs

▶ Metamath automation is decentralized
▶ This is nice in principle, but in practice most people

won’t be writing their own proof assistant
▶ Metamath has a reputation for having no automation

as a result
▶ Existing MM proof assistants are certainly lacking in

small scale automation compared to HOL light,
Isabelle, Coq, Lean

17 / 46

Deficiencies of Metamath

▶ Metamath tries to simultaneously serve the human
reader and the computer verifier, but they have
divergent needs
▶ The big block of compressed proof text is very

off-putting for newcomers, and not great for source
control either

▶ In practice you need a tool to read proofs

▶ Metamath automation is decentralized
▶ This is nice in principle, but in practice most people

won’t be writing their own proof assistant
▶ Metamath has a reputation for having no automation

as a result
▶ Existing MM proof assistants are certainly lacking in

small scale automation compared to HOL light,
Isabelle, Coq, Lean

17 / 46

Deficiencies of Metamath

▶ Metamath tries to simultaneously serve the human
reader and the computer verifier, but they have
divergent needs
▶ The big block of compressed proof text is very

off-putting for newcomers, and not great for source
control either

▶ In practice you need a tool to read proofs

▶ Metamath automation is decentralized
▶ This is nice in principle, but in practice most people

won’t be writing their own proof assistant

▶ Metamath has a reputation for having no automation
as a result

▶ Existing MM proof assistants are certainly lacking in
small scale automation compared to HOL light,
Isabelle, Coq, Lean

17 / 46

Deficiencies of Metamath

▶ Metamath tries to simultaneously serve the human
reader and the computer verifier, but they have
divergent needs
▶ The big block of compressed proof text is very

off-putting for newcomers, and not great for source
control either

▶ In practice you need a tool to read proofs

▶ Metamath automation is decentralized
▶ This is nice in principle, but in practice most people

won’t be writing their own proof assistant
▶ Metamath has a reputation for having no automation

as a result

▶ Existing MM proof assistants are certainly lacking in
small scale automation compared to HOL light,
Isabelle, Coq, Lean

17 / 46

Deficiencies of Metamath

▶ Metamath tries to simultaneously serve the human
reader and the computer verifier, but they have
divergent needs
▶ The big block of compressed proof text is very

off-putting for newcomers, and not great for source
control either

▶ In practice you need a tool to read proofs

▶ Metamath automation is decentralized
▶ This is nice in principle, but in practice most people

won’t be writing their own proof assistant
▶ Metamath has a reputation for having no automation

as a result
▶ Existing MM proof assistants are certainly lacking in

small scale automation compared to HOL light,
Isabelle, Coq, Lean

17 / 46

Metamath Zero

▶ Metamath Zero is a project I started in 2019 to solve the problem of
bootstrapping a theorem prover

▶ Double down on all the things that make Metamath great for metatheory
▶ Keep it simple, but expressive
▶ The “one rule” of Metamath is a universal computing machine – users can

effectively write the language they want to verify using lemmas

▶ Make it more automation friendly
▶ Fix some asymptotic complexity issues in metamath (DAG sharing all the things)
▶ Use trees for the internal representation instead of token strings
▶ Have a metaprogramming language for the front end (a tactic language)

▶ Give it a more modern-looking syntax
▶ shamelessly borrowed from Lean

18 / 46

Metamath Zero

▶ Metamath Zero is a project I started in 2019 to solve the problem of
bootstrapping a theorem prover

▶ Double down on all the things that make Metamath great for metatheory
▶ Keep it simple, but expressive

▶ The “one rule” of Metamath is a universal computing machine – users can
effectively write the language they want to verify using lemmas

▶ Make it more automation friendly
▶ Fix some asymptotic complexity issues in metamath (DAG sharing all the things)
▶ Use trees for the internal representation instead of token strings
▶ Have a metaprogramming language for the front end (a tactic language)

▶ Give it a more modern-looking syntax
▶ shamelessly borrowed from Lean

18 / 46

Metamath Zero

▶ Metamath Zero is a project I started in 2019 to solve the problem of
bootstrapping a theorem prover

▶ Double down on all the things that make Metamath great for metatheory
▶ Keep it simple, but expressive
▶ The “one rule” of Metamath is a universal computing machine – users can

effectively write the language they want to verify using lemmas

▶ Make it more automation friendly
▶ Fix some asymptotic complexity issues in metamath (DAG sharing all the things)
▶ Use trees for the internal representation instead of token strings
▶ Have a metaprogramming language for the front end (a tactic language)

▶ Give it a more modern-looking syntax
▶ shamelessly borrowed from Lean

18 / 46

Metamath Zero

▶ Metamath Zero is a project I started in 2019 to solve the problem of
bootstrapping a theorem prover

▶ Double down on all the things that make Metamath great for metatheory
▶ Keep it simple, but expressive
▶ The “one rule” of Metamath is a universal computing machine – users can

effectively write the language they want to verify using lemmas

▶ Make it more automation friendly

▶ Fix some asymptotic complexity issues in metamath (DAG sharing all the things)
▶ Use trees for the internal representation instead of token strings
▶ Have a metaprogramming language for the front end (a tactic language)

▶ Give it a more modern-looking syntax
▶ shamelessly borrowed from Lean

18 / 46

Metamath Zero

▶ Metamath Zero is a project I started in 2019 to solve the problem of
bootstrapping a theorem prover

▶ Double down on all the things that make Metamath great for metatheory
▶ Keep it simple, but expressive
▶ The “one rule” of Metamath is a universal computing machine – users can

effectively write the language they want to verify using lemmas

▶ Make it more automation friendly
▶ Fix some asymptotic complexity issues in metamath (DAG sharing all the things)

▶ Use trees for the internal representation instead of token strings
▶ Have a metaprogramming language for the front end (a tactic language)

▶ Give it a more modern-looking syntax
▶ shamelessly borrowed from Lean

18 / 46

Metamath Zero

▶ Metamath Zero is a project I started in 2019 to solve the problem of
bootstrapping a theorem prover

▶ Double down on all the things that make Metamath great for metatheory
▶ Keep it simple, but expressive
▶ The “one rule” of Metamath is a universal computing machine – users can

effectively write the language they want to verify using lemmas

▶ Make it more automation friendly
▶ Fix some asymptotic complexity issues in metamath (DAG sharing all the things)
▶ Use trees for the internal representation instead of token strings

▶ Have a metaprogramming language for the front end (a tactic language)

▶ Give it a more modern-looking syntax
▶ shamelessly borrowed from Lean

18 / 46

Metamath Zero

▶ Metamath Zero is a project I started in 2019 to solve the problem of
bootstrapping a theorem prover

▶ Double down on all the things that make Metamath great for metatheory
▶ Keep it simple, but expressive
▶ The “one rule” of Metamath is a universal computing machine – users can

effectively write the language they want to verify using lemmas

▶ Make it more automation friendly
▶ Fix some asymptotic complexity issues in metamath (DAG sharing all the things)
▶ Use trees for the internal representation instead of token strings
▶ Have a metaprogramming language for the front end (a tactic language)

▶ Give it a more modern-looking syntax
▶ shamelessly borrowed from Lean

18 / 46

Metamath Zero

▶ Metamath Zero is a project I started in 2019 to solve the problem of
bootstrapping a theorem prover

▶ Double down on all the things that make Metamath great for metatheory
▶ Keep it simple, but expressive
▶ The “one rule” of Metamath is a universal computing machine – users can

effectively write the language they want to verify using lemmas

▶ Make it more automation friendly
▶ Fix some asymptotic complexity issues in metamath (DAG sharing all the things)
▶ Use trees for the internal representation instead of token strings
▶ Have a metaprogramming language for the front end (a tactic language)

▶ Give it a more modern-looking syntax
▶ shamelessly borrowed from Lean

18 / 46

Introduction to Metamath C

19 / 46

Software without bugs is possible

▶ Bugs in software are generally thought to be inevitable
▶ Software correctness is increasingly important as people rely on software in

critical infrastructure
▶ Testing is only an incomplete solution, since checking all inputs is infeasible

for most programs
▶ Software correctness is a mathematical question
▶ Software is a logical construct
▶ Software specifications are mathematical statements

→ Software correctness can be proved by mathematical proof (“deductive
verification”)

20 / 46

Software without bugs is possible

▶ Bugs in software are generally thought to be inevitable

▶ Software correctness is increasingly important as people rely on software in
critical infrastructure

▶ Testing is only an incomplete solution, since checking all inputs is infeasible
for most programs

▶ Software correctness is a mathematical question
▶ Software is a logical construct
▶ Software specifications are mathematical statements

→ Software correctness can be proved by mathematical proof (“deductive
verification”)

20 / 46

Software without bugs is possible

▶ Bugs in software are generally thought to be inevitable
▶ Software correctness is increasingly important as people rely on software in

critical infrastructure

▶ Testing is only an incomplete solution, since checking all inputs is infeasible
for most programs

▶ Software correctness is a mathematical question
▶ Software is a logical construct
▶ Software specifications are mathematical statements

→ Software correctness can be proved by mathematical proof (“deductive
verification”)

20 / 46

Software without bugs is possible

▶ Bugs in software are generally thought to be inevitable
▶ Software correctness is increasingly important as people rely on software in

critical infrastructure
▶ Testing is only an incomplete solution, since checking all inputs is infeasible

for most programs

▶ Software correctness is a mathematical question
▶ Software is a logical construct
▶ Software specifications are mathematical statements

→ Software correctness can be proved by mathematical proof (“deductive
verification”)

20 / 46

Software without bugs is possible

▶ Bugs in software are generally thought to be inevitable
▶ Software correctness is increasingly important as people rely on software in

critical infrastructure
▶ Testing is only an incomplete solution, since checking all inputs is infeasible

for most programs
▶ Software correctness is a mathematical question

▶ Software is a logical construct
▶ Software specifications are mathematical statements

→ Software correctness can be proved by mathematical proof (“deductive
verification”)

20 / 46

Software without bugs is possible

▶ Bugs in software are generally thought to be inevitable
▶ Software correctness is increasingly important as people rely on software in

critical infrastructure
▶ Testing is only an incomplete solution, since checking all inputs is infeasible

for most programs
▶ Software correctness is a mathematical question
▶ Software is a logical construct
▶ Software specifications are mathematical statements

→ Software correctness can be proved by mathematical proof (“deductive
verification”)

20 / 46

Software without bugs is possible

▶ Bugs in software are generally thought to be inevitable
▶ Software correctness is increasingly important as people rely on software in

critical infrastructure
▶ Testing is only an incomplete solution, since checking all inputs is infeasible

for most programs
▶ Software correctness is a mathematical question
▶ Software is a logical construct
▶ Software specifications are mathematical statements

→ Software correctness can be proved by mathematical proof (“deductive
verification”)

20 / 46

Why doesn’t everyone do it?

It is too hard!
▶ Most programming languages don’t even support verification in principle
▶ Those that do often only do so at a surface level, leaving users to trust the

programming language
▶ Compilers have bugs too

▶ Even if the compiler is verified (most aren’t), it doesn’t help if the compiler
faithfully translates your bugs

▶ We need a language to help people write verified programs

Metamath C is a language for writing verified programs.

21 / 46

Why doesn’t everyone do it?

It is too hard!

▶ Most programming languages don’t even support verification in principle
▶ Those that do often only do so at a surface level, leaving users to trust the

programming language
▶ Compilers have bugs too

▶ Even if the compiler is verified (most aren’t), it doesn’t help if the compiler
faithfully translates your bugs

▶ We need a language to help people write verified programs

Metamath C is a language for writing verified programs.

21 / 46

Why doesn’t everyone do it?

It is too hard!
▶ Most programming languages don’t even support verification in principle

▶ Those that do often only do so at a surface level, leaving users to trust the
programming language
▶ Compilers have bugs too

▶ Even if the compiler is verified (most aren’t), it doesn’t help if the compiler
faithfully translates your bugs

▶ We need a language to help people write verified programs

Metamath C is a language for writing verified programs.

21 / 46

Why doesn’t everyone do it?

It is too hard!
▶ Most programming languages don’t even support verification in principle
▶ Those that do often only do so at a surface level, leaving users to trust the

programming language

▶ Compilers have bugs too

▶ Even if the compiler is verified (most aren’t), it doesn’t help if the compiler
faithfully translates your bugs

▶ We need a language to help people write verified programs

Metamath C is a language for writing verified programs.

21 / 46

Why doesn’t everyone do it?

It is too hard!
▶ Most programming languages don’t even support verification in principle
▶ Those that do often only do so at a surface level, leaving users to trust the

programming language
▶ Compilers have bugs too

▶ Even if the compiler is verified (most aren’t), it doesn’t help if the compiler
faithfully translates your bugs

▶ We need a language to help people write verified programs

Metamath C is a language for writing verified programs.

21 / 46

Why doesn’t everyone do it?

It is too hard!
▶ Most programming languages don’t even support verification in principle
▶ Those that do often only do so at a surface level, leaving users to trust the

programming language
▶ Compilers have bugs too

▶ Even if the compiler is verified (most aren’t), it doesn’t help if the compiler
faithfully translates your bugs

▶ We need a language to help people write verified programs

Metamath C is a language for writing verified programs.

21 / 46

Why doesn’t everyone do it?

It is too hard!
▶ Most programming languages don’t even support verification in principle
▶ Those that do often only do so at a surface level, leaving users to trust the

programming language
▶ Compilers have bugs too

▶ Even if the compiler is verified (most aren’t), it doesn’t help if the compiler
faithfully translates your bugs

▶ We need a language to help people write verified programs

Metamath C is a language for writing verified programs.

21 / 46

Why doesn’t everyone do it?

It is too hard!
▶ Most programming languages don’t even support verification in principle
▶ Those that do often only do so at a surface level, leaving users to trust the

programming language
▶ Compilers have bugs too

▶ Even if the compiler is verified (most aren’t), it doesn’t help if the compiler
faithfully translates your bugs

▶ We need a language to help people write verified programs

Metamath C is a language for writing verified programs.

21 / 46

Metamath Zero Architecture

▶ MM0: The logic and specification language
▶ Simple structure
▶ Standalone verifier
▶ “small trusted kernel”

▶ MM1: The proof assistant – produces MM0 proofs
▶ Runs tactics and metaprograms and exports MM0 proofs

▶ MMC: A proof-producing compiler
▶ A programming language for producing (x86) programs with a proof of

correctness

22 / 46

Metamath Zero Architecture

▶ MM0: The logic and specification language
▶ Simple structure
▶ Standalone verifier
▶ “small trusted kernel”

▶ MM1: The proof assistant – produces MM0 proofs
▶ Runs tactics and metaprograms and exports MM0 proofs

▶ MMC: A proof-producing compiler
▶ A programming language for producing (x86) programs with a proof of

correctness

22 / 46

Metamath Zero Architecture

▶ MM0: The logic and specification language
▶ Simple structure
▶ Standalone verifier
▶ “small trusted kernel”

▶ MM1: The proof assistant – produces MM0 proofs
▶ Runs tactics and metaprograms and exports MM0 proofs

▶ MMC: A proof-producing compiler
▶ A programming language for producing (x86) programs with a proof of

correctness

22 / 46

Metamath Zero Architecture

▶ MM0: The logic and specification language
▶ MM1: The proof assistant
▶ MMC: A proof-producing compiler

▶ We use MM1 to write proofs in the MM0 logic

▶ We use MM1 as a framework to run the MMC compiler
▶ The MMC compiler produces MM0 proofs
▶ The MM0 verifier is written in MMC – bootstrap!

23 / 46

Metamath Zero Architecture

▶ MM0: The logic and specification language
▶ MM1: The proof assistant
▶ MMC: A proof-producing compiler

▶ We use MM1 to write proofs in the MM0 logic
▶ We use MM1 as a framework to run the MMC compiler

▶ The MMC compiler produces MM0 proofs
▶ The MM0 verifier is written in MMC – bootstrap!

23 / 46

Metamath Zero Architecture

▶ MM0: The logic and specification language
▶ MM1: The proof assistant
▶ MMC: A proof-producing compiler

▶ We use MM1 to write proofs in the MM0 logic
▶ We use MM1 as a framework to run the MMC compiler
▶ The MMC compiler produces MM0 proofs

▶ The MM0 verifier is written in MMC – bootstrap!

23 / 46

Metamath Zero Architecture

▶ MM0: The logic and specification language
▶ MM1: The proof assistant
▶ MMC: A proof-producing compiler

▶ We use MM1 to write proofs in the MM0 logic
▶ We use MM1 as a framework to run the MMC compiler
▶ The MMC compiler produces MM0 proofs
▶ The MM0 verifier is written in MMC – bootstrap!

23 / 46

Metamath Zero Architecture

▶ MM0: The logic and specification language
▶ MM1: The proof assistant
▶ MMC: A proof-producing compiler

▶ We use MM1 to write proofs in the MM0 logic
▶ We use MM1 as a framework to run the MMC compiler
▶ The MMC compiler produces MM0 proofs
▶ The MM0 verifier is written in MMC2 – bootstrap!

2Currently the MMC verifier for MM0 is not finished, but there are multiple other MM0 verifiers
so it can already be used without the bootstrap.

23 / 46

A simple MM0 file: propositional logic
delimiter $ (∼ $ $) $;

strict provable sort wff;

term im (a b: wff): wff; infixr im: $->$ prec 25;

term not (a: wff): wff; prefix not: $∼$ prec 40;

-- The Lukasiewicz axioms for propositional logic

axiom ax_1 (a b: wff): $ a -> b -> a $;

axiom ax_2 (a b c: wff):

$ (a -> b -> c) -> (a -> b) -> a -> c $;

axiom ax_3 (a b: wff):

$ (∼a -> ∼b) -> b -> a $;

axiom ax_mp (a b: wff):

$ a -> b $ >

$ a $ >

$ b $;

-- Assert that ‘P -> P‘ is provable

theorem id (P: wff): $ P -> P $;
24 / 46

Peano arithmetic
... -- predicate logic

--| The sort of natural numbers, or nonnegative integers.

sort nat;

--| ‘0‘ is a natural number.

term d0: nat; prefix d0: 0 prec max;

--| The successor operation: ‘suc n‘ is a natural number when ‘n‘ is.

term suc (n: nat): nat;

--| Zero is not a successor. Axiom 1 of Peano Arithmetic.

axiom sucne0 (a: nat): $ suc a != 0 $;

--| The successor function is injective. Axiom 2 of Peano Arithmetic.

axiom sucinj (a b: nat): $ suc a = suc b <-> a = b $;

--| The induction axiom of Peano Arithmetic. If ‘p(0)‘ is true,

--| and ‘p(x)‘ implies ‘p(suc x)‘ for all ‘x‘, then ‘p(x)‘ is true for all ‘x‘.

axiom induction {x: nat} (p: wff x):

$ [0 / x] p -> A. x (p -> [suc x / x] p) -> A. x p $;
25 / 46

Peano arithmetic
--| Addition of natural numbers, a primitive term constructor in PA.

term add (a b: nat): nat; infixl add: $+$ prec 64;

--| Multiplication of natural numbers, a primitive term constructor in PA.

term mul (a b: nat): nat; infixl mul: $*$ prec 70;

--| Addition respects equalty.

axiom addeq (a b c d: nat): $ a = b -> c = d -> a + c = b + d $;

--| Multiplication respects equalty.

axiom muleq (a b c d: nat): $ a = b -> c = d -> a * c = b * d $;

--| The base case in the definition of addition.

axiom add0 (a: nat): $ a + 0 = a $;

--| The successor case in the definition of addition.

axiom addS (a b: nat): $ a + suc b = suc (a + b) $;

--| The base case in the definition of multiplication.

axiom mul0 (a: nat): $ a * 0 = 0 $;

--| The successor case in the definition of multiplication.

axiom mulS (a b: nat): $ a * suc b = a * b + a $;

26 / 46

Peano arithmetic

▶ Peano arithmetic is a very simple axiomatic system, but also quite expressive

We define:

▶ Propositional logic
▶ Predicate logic
▶ Class theory
▶ +, −, ∗, /, mod, gcd
▶ even, odd, disjoint sums
▶ ordered pairs, cartesian product
▶ finite functions, class functions
▶ Integers: +, −, ∗, /, mod

▶ Bitwise operators
▶ Recursion, exponentiation
▶ Lists
▶ Set operators
▶ finite sets, finite set theory
▶ cardinality
▶ List ops: length, append, repeat,

reverse, map, join, filter, zip, . . .

27 / 46

Peano arithmetic

▶ Peano arithmetic is a very simple axiomatic system, but also quite expressive
We define:

▶ Propositional logic
▶ Predicate logic
▶ Class theory
▶ +, −, ∗, /, mod, gcd
▶ even, odd, disjoint sums
▶ ordered pairs, cartesian product
▶ finite functions, class functions
▶ Integers: +, −, ∗, /, mod

▶ Bitwise operators
▶ Recursion, exponentiation
▶ Lists
▶ Set operators
▶ finite sets, finite set theory
▶ cardinality
▶ List ops: length, append, repeat,

reverse, map, join, filter, zip, . . .

27 / 46

Metaprogramming with MM1

▶ MM1 comes with a metaprogramming language based on Scheme

do {

(display "hello world") -- hello world

{2 + 2} -- 4

(def x 5)

{x + x} -- 10

(def (f y) {y + y})

(f 3) -- 6

(def (fact x)

(if {x = 0}

1

{x * (fact {x - 1})}))

(fact 5) -- 120

};

28 / 46

Metaprogramming with MM1

▶ MM1 comes with a metaprogramming language based on Scheme
▶ We can use this to implement tactics to prove simple classes of theorems

▶ We can prove basic arithmetic theorems this way:

theorem _: $,19 * ,120 + ,2 = ,2282 $ = norm_num;

▶ theorem _ means it is an example
▶ norm_num is the tactic which proves the theorem
▶ ,19 calls a preprocessor to render 19 as a term. The actual theorem proved is:

theorem _: $ (x1 :x x3) * (x7 :x x8) + x2 = (x8 :x xe :x xa) $;

that is, 0x13 · 0x78 + 0x2 = 0x8ea which is the theorem written in hexadecimal

29 / 46

Metaprogramming with MM1

▶ MM1 comes with a metaprogramming language based on Scheme
▶ We can use this to implement tactics to prove simple classes of theorems
▶ We can prove basic arithmetic theorems this way:

theorem _: $,19 * ,120 + ,2 = ,2282 $ = norm_num;

▶ theorem _ means it is an example
▶ norm_num is the tactic which proves the theorem
▶ ,19 calls a preprocessor to render 19 as a term. The actual theorem proved is:

theorem _: $ (x1 :x x3) * (x7 :x x8) + x2 = (x8 :x xe :x xa) $;

that is, 0x13 · 0x78 + 0x2 = 0x8ea which is the theorem written in hexadecimal

29 / 46

Metaprogramming with MM1

▶ MM1 comes with a metaprogramming language based on Scheme
▶ We can use this to implement tactics to prove simple classes of theorems
▶ We can prove basic arithmetic theorems this way:

theorem _: $,19 * ,120 + ,2 = ,2282 $ = norm_num;

▶ theorem _ means it is an example

▶ norm_num is the tactic which proves the theorem
▶ ,19 calls a preprocessor to render 19 as a term. The actual theorem proved is:

theorem _: $ (x1 :x x3) * (x7 :x x8) + x2 = (x8 :x xe :x xa) $;

that is, 0x13 · 0x78 + 0x2 = 0x8ea which is the theorem written in hexadecimal

29 / 46

Metaprogramming with MM1

▶ MM1 comes with a metaprogramming language based on Scheme
▶ We can use this to implement tactics to prove simple classes of theorems
▶ We can prove basic arithmetic theorems this way:

theorem _: $,19 * ,120 + ,2 = ,2282 $ = norm_num;

▶ theorem _ means it is an example
▶ norm_num is the tactic which proves the theorem

▶ ,19 calls a preprocessor to render 19 as a term. The actual theorem proved is:

theorem _: $ (x1 :x x3) * (x7 :x x8) + x2 = (x8 :x xe :x xa) $;

that is, 0x13 · 0x78 + 0x2 = 0x8ea which is the theorem written in hexadecimal

29 / 46

Metaprogramming with MM1

▶ MM1 comes with a metaprogramming language based on Scheme
▶ We can use this to implement tactics to prove simple classes of theorems
▶ We can prove basic arithmetic theorems this way:

theorem _: $,19 * ,120 + ,2 = ,2282 $ = norm_num;

▶ theorem _ means it is an example
▶ norm_num is the tactic which proves the theorem
▶ ,19 calls a preprocessor to render 19 as a term. The actual theorem proved is:

theorem _: $ (x1 :x x3) * (x7 :x x8) + x2 = (x8 :x xe :x xa) $;

that is, 0x13 · 0x78 + 0x2 = 0x8ea which is the theorem written in hexadecimal

29 / 46

Working with MM1

From “Metamath Zero (MM0/MM1) tutorial”, https://youtu.be/A7WfrW7-ifw

30 / 46

https://youtu.be/A7WfrW7-ifw

Specifying x86
▶ x86-64 is the common name for Intel’s instruction set architecture (ISA) that

runs on most computers

▶ For this project I wrote down the specification of a decent chunk of x86-64

This involves:
▶ The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM

and other operand bytes
▶ (This is approximately what an assembler does)

▶ The interpretation of each instruction into execution semantics
▶ This requires a model of the registers, instruction pointer, flags, memory, page

permissions, exception state
▶ To interpret IO, a model of the (Linux) operating system
▶ We focus mainly on the possible inputs and outputs of the program, for simple

console applications like the MM0 verifier

▶ The ELF file format (the linux equivalent of .exe)

31 / 46

Specifying x86
▶ x86-64 is the common name for Intel’s instruction set architecture (ISA) that

runs on most computers
▶ For this project I wrote down the specification of a decent chunk of x86-64

This involves:
▶ The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM

and other operand bytes
▶ (This is approximately what an assembler does)

▶ The interpretation of each instruction into execution semantics
▶ This requires a model of the registers, instruction pointer, flags, memory, page

permissions, exception state
▶ To interpret IO, a model of the (Linux) operating system
▶ We focus mainly on the possible inputs and outputs of the program, for simple

console applications like the MM0 verifier

▶ The ELF file format (the linux equivalent of .exe)

31 / 46

Specifying x86
▶ x86-64 is the common name for Intel’s instruction set architecture (ISA) that

runs on most computers
▶ For this project I wrote down the specification of a decent chunk of x86-64

This involves:
▶ The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM

and other operand bytes
▶ (This is approximately what an assembler does)

▶ The interpretation of each instruction into execution semantics
▶ This requires a model of the registers, instruction pointer, flags, memory, page

permissions, exception state
▶ To interpret IO, a model of the (Linux) operating system
▶ We focus mainly on the possible inputs and outputs of the program, for simple

console applications like the MM0 verifier

▶ The ELF file format (the linux equivalent of .exe)

31 / 46

Specifying x86
▶ x86-64 is the common name for Intel’s instruction set architecture (ISA) that

runs on most computers
▶ For this project I wrote down the specification of a decent chunk of x86-64

This involves:
▶ The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM

and other operand bytes
▶ (This is approximately what an assembler does)

▶ The interpretation of each instruction into execution semantics

▶ This requires a model of the registers, instruction pointer, flags, memory, page
permissions, exception state

▶ To interpret IO, a model of the (Linux) operating system
▶ We focus mainly on the possible inputs and outputs of the program, for simple

console applications like the MM0 verifier

▶ The ELF file format (the linux equivalent of .exe)

31 / 46

Specifying x86
▶ x86-64 is the common name for Intel’s instruction set architecture (ISA) that

runs on most computers
▶ For this project I wrote down the specification of a decent chunk of x86-64

This involves:
▶ The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM

and other operand bytes
▶ (This is approximately what an assembler does)

▶ The interpretation of each instruction into execution semantics
▶ This requires a model of the registers, instruction pointer, flags, memory, page

permissions, exception state

▶ To interpret IO, a model of the (Linux) operating system
▶ We focus mainly on the possible inputs and outputs of the program, for simple

console applications like the MM0 verifier

▶ The ELF file format (the linux equivalent of .exe)

31 / 46

Specifying x86
▶ x86-64 is the common name for Intel’s instruction set architecture (ISA) that

runs on most computers
▶ For this project I wrote down the specification of a decent chunk of x86-64

This involves:
▶ The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM

and other operand bytes
▶ (This is approximately what an assembler does)

▶ The interpretation of each instruction into execution semantics
▶ This requires a model of the registers, instruction pointer, flags, memory, page

permissions, exception state
▶ To interpret IO, a model of the (Linux) operating system

▶ We focus mainly on the possible inputs and outputs of the program, for simple
console applications like the MM0 verifier

▶ The ELF file format (the linux equivalent of .exe)

31 / 46

Specifying x86
▶ x86-64 is the common name for Intel’s instruction set architecture (ISA) that

runs on most computers
▶ For this project I wrote down the specification of a decent chunk of x86-64

This involves:
▶ The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM

and other operand bytes
▶ (This is approximately what an assembler does)

▶ The interpretation of each instruction into execution semantics
▶ This requires a model of the registers, instruction pointer, flags, memory, page

permissions, exception state
▶ To interpret IO, a model of the (Linux) operating system
▶ We focus mainly on the possible inputs and outputs of the program, for simple

console applications like the MM0 verifier

▶ The ELF file format (the linux equivalent of .exe)

31 / 46

Specifying x86
▶ x86-64 is the common name for Intel’s instruction set architecture (ISA) that

runs on most computers
▶ For this project I wrote down the specification of a decent chunk of x86-64

This involves:
▶ The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM

and other operand bytes
▶ (This is approximately what an assembler does)

▶ The interpretation of each instruction into execution semantics
▶ This requires a model of the registers, instruction pointer, flags, memory, page

permissions, exception state
▶ To interpret IO, a model of the (Linux) operating system
▶ We focus mainly on the possible inputs and outputs of the program, for simple

console applications like the MM0 verifier

▶ The ELF file format (the linux equivalent of .exe)
31 / 46

Metamath C

▶ This is everything we need to state the correctness theorem for a compiled
program:

Program correctness

Program P is correct to specification T if for every initial state s ∈ init(P), all
nondeterministic evaluations do not cause undefined behavior, and after reaching
a final state s⇝∗ s′, if s′ is a successful exit state and input_consumed(s′) = I and
output_produced(s′) = O, then T(I,O) is true.

▶ Red: definitions from x86.mm0

▶ Blue: the user specification

▶ The Metamath C compiler produces theorems of this form.

32 / 46

Metamath C

▶ This is everything we need to state the correctness theorem for a compiled
program:

Program correctness

Program P is correct to specification T if for every initial state s ∈ init(P), all
nondeterministic evaluations do not cause undefined behavior, and after reaching
a final state s⇝∗ s′, if s′ is a successful exit state and input_consumed(s′) = I and
output_produced(s′) = O, then T(I,O) is true.

▶ Red: definitions from x86.mm0

▶ Blue: the user specification

▶ The Metamath C compiler produces theorems of this form.

32 / 46

Metamath C

▶ MMC is not a “general-purpose” programming language
▶ Someday, it can hope to be about as general purpose as C or Rust, but this is a

gargantuan effort for many reasons

▶ The niche MMC fills is writing executable programs which provably satisfy
some condition

▶ Most programs don’t need this property, but correctness is important to some
degree in almost every program, and (approximate) type correctness is
mainstream

33 / 46

Type system→ static analysis→ theorem prover

Programming languages have come a long way in terms of provable correctness
▶ Assembly: bare minimum type system required to make instructions

compilable

▶ C: Typed pointers, structs
▶ Java: Generic types, type polymorphism
▶ Haskell: Algebraic data types
▶ Rust: Linear types
▶ Static analyzers: Value analysis, contract checking
▶ Lean: Dependent types, proof objects
▶ Metamath C

A type checker is just a simple theorem prover; the study of one naturally leads to
the other

34 / 46

Type system→ static analysis→ theorem prover

Programming languages have come a long way in terms of provable correctness
▶ Assembly: bare minimum type system required to make instructions

compilable
▶ C: Typed pointers, structs

▶ Java: Generic types, type polymorphism
▶ Haskell: Algebraic data types
▶ Rust: Linear types
▶ Static analyzers: Value analysis, contract checking
▶ Lean: Dependent types, proof objects
▶ Metamath C

A type checker is just a simple theorem prover; the study of one naturally leads to
the other

34 / 46

Type system→ static analysis→ theorem prover

Programming languages have come a long way in terms of provable correctness
▶ Assembly: bare minimum type system required to make instructions

compilable
▶ C: Typed pointers, structs
▶ Java: Generic types, type polymorphism

▶ Haskell: Algebraic data types
▶ Rust: Linear types
▶ Static analyzers: Value analysis, contract checking
▶ Lean: Dependent types, proof objects
▶ Metamath C

A type checker is just a simple theorem prover; the study of one naturally leads to
the other

34 / 46

Type system→ static analysis→ theorem prover

Programming languages have come a long way in terms of provable correctness
▶ Assembly: bare minimum type system required to make instructions

compilable
▶ C: Typed pointers, structs
▶ Java: Generic types, type polymorphism
▶ Haskell: Algebraic data types

▶ Rust: Linear types
▶ Static analyzers: Value analysis, contract checking
▶ Lean: Dependent types, proof objects
▶ Metamath C

A type checker is just a simple theorem prover; the study of one naturally leads to
the other

34 / 46

Type system→ static analysis→ theorem prover

Programming languages have come a long way in terms of provable correctness
▶ Assembly: bare minimum type system required to make instructions

compilable
▶ C: Typed pointers, structs
▶ Java: Generic types, type polymorphism
▶ Haskell: Algebraic data types
▶ Rust: Linear types

▶ Static analyzers: Value analysis, contract checking
▶ Lean: Dependent types, proof objects
▶ Metamath C

A type checker is just a simple theorem prover; the study of one naturally leads to
the other

34 / 46

Type system→ static analysis→ theorem prover

Programming languages have come a long way in terms of provable correctness
▶ Assembly: bare minimum type system required to make instructions

compilable
▶ C: Typed pointers, structs
▶ Java: Generic types, type polymorphism
▶ Haskell: Algebraic data types
▶ Rust: Linear types
▶ Static analyzers: Value analysis, contract checking

▶ Lean: Dependent types, proof objects
▶ Metamath C

A type checker is just a simple theorem prover; the study of one naturally leads to
the other

34 / 46

Type system→ static analysis→ theorem prover

Programming languages have come a long way in terms of provable correctness
▶ Assembly: bare minimum type system required to make instructions

compilable
▶ C: Typed pointers, structs
▶ Java: Generic types, type polymorphism
▶ Haskell: Algebraic data types
▶ Rust: Linear types
▶ Static analyzers: Value analysis, contract checking
▶ Lean: Dependent types, proof objects

▶ Metamath C
A type checker is just a simple theorem prover; the study of one naturally leads to
the other

34 / 46

Type system→ static analysis→ theorem prover

Programming languages have come a long way in terms of provable correctness
▶ Assembly: bare minimum type system required to make instructions

compilable
▶ C: Typed pointers, structs
▶ Java: Generic types, type polymorphism
▶ Haskell: Algebraic data types
▶ Rust: Linear types
▶ Static analyzers: Value analysis, contract checking
▶ Lean: Dependent types, proof objects
▶ Metamath C

A type checker is just a simple theorem prover; the study of one naturally leads to
the other

34 / 46

Examples: Procedures

▶ This is a function that takes two 32 bit integers and returns their sum,
wrapped to 32 bits

proc add2(x: u32, y: u32): u32 {

return (x + y) as u32;

}

▶ Supports multiple returns and dependent types for writing preconditions and
postconditions

proc deptypes(x: u32, _: x = 0): y: u32, sn((x + y) as u32) {

1, sn((x + 1) as u32)

}

35 / 46

Examples: Procedures

▶ This is a function that takes two 32 bit integers and returns their sum,
wrapped to 32 bits

proc add2(x: u32, y: u32): u32 {

return (x + y) as u32;

}

▶ Supports multiple returns and dependent types for writing preconditions and
postconditions

proc deptypes(x: u32, _: x = 0): y: u32, sn((x + y) as u32) {

1, sn((x + 1) as u32)

}

35 / 46

Examples: Tuples and pattern matching

▶ This function constructs and destructs some tuples. The sn(1), sn(2) return
type says that this function returns exactly the values 1 and 2

proc tuples(): sn(1), sn(2) {

let x: (nat, nat) := (1, 2);

let (one, two) := x;

sn(one), sn(two)

}

36 / 46

Examples: Tuples and pattern matching

▶ This function constructs and destructs some tuples. The sn(1), sn(2) return
type says that this function returns exactly the values 1 and 2

proc tuples(): sn(1), sn(2) {

let x: (nat, nat) := (1, 3); // <- changed 2 to 3

let (one, two) := x;

sn(one), sn(two) // type error!

}

37 / 46

Examples: Control flow

▶ After an if statement, you can capture the property’s truth value in a variable:

proc if_statement(x: nat) {

if h: x < 10 {

// x: nat, h: x < 10

} else {

// x: nat, h: ∼(x < 10)

}

}

38 / 46

Examples: Control flow

▶ While loops and assignment:

proc while_loop() {

let b := true;

let h2 := while h: b {

// h: b

b <- false;

};

// h2: ∼b

}

39 / 46

Examples: Numeric types

▶ There are various fixed size integral types, as well as unbounded integer types

τ ::= u8 | u16 | u32 | u64 | nat | i8 | i16 | i32 | i64 | int | . . .

▶ Numeric operations yield their exact untruncated value, so the user must
decide how to cast the value back into range:
▶ (x + y): nat: don’t truncate at all (this can only be used in limited ways)
▶ (x + y) as u32: wrap the result
▶ (x + y): u32: make the type checker prove it is in range (usually only works if

the values of x and y are known)
▶ cast(x + y, h): u32: prove that x + y < 232

▶ cast(x + y): u32: assert that x + y < 232 and crash otherwise

40 / 46

Examples: Numeric types

▶ There are various fixed size integral types, as well as unbounded integer types

τ ::= u8 | u16 | u32 | u64 | nat | i8 | i16 | i32 | i64 | int | . . .

▶ Numeric operations yield their exact untruncated value, so the user must
decide how to cast the value back into range:

▶ (x + y): nat: don’t truncate at all (this can only be used in limited ways)
▶ (x + y) as u32: wrap the result
▶ (x + y): u32: make the type checker prove it is in range (usually only works if

the values of x and y are known)
▶ cast(x + y, h): u32: prove that x + y < 232

▶ cast(x + y): u32: assert that x + y < 232 and crash otherwise

40 / 46

Examples: Numeric types

▶ There are various fixed size integral types, as well as unbounded integer types

τ ::= u8 | u16 | u32 | u64 | nat | i8 | i16 | i32 | i64 | int | . . .

▶ Numeric operations yield their exact untruncated value, so the user must
decide how to cast the value back into range:
▶ (x + y): nat: don’t truncate at all (this can only be used in limited ways)

▶ (x + y) as u32: wrap the result
▶ (x + y): u32: make the type checker prove it is in range (usually only works if

the values of x and y are known)
▶ cast(x + y, h): u32: prove that x + y < 232

▶ cast(x + y): u32: assert that x + y < 232 and crash otherwise

40 / 46

Examples: Numeric types

▶ There are various fixed size integral types, as well as unbounded integer types

τ ::= u8 | u16 | u32 | u64 | nat | i8 | i16 | i32 | i64 | int | . . .

▶ Numeric operations yield their exact untruncated value, so the user must
decide how to cast the value back into range:
▶ (x + y): nat: don’t truncate at all (this can only be used in limited ways)
▶ (x + y) as u32: wrap the result

▶ (x + y): u32: make the type checker prove it is in range (usually only works if
the values of x and y are known)

▶ cast(x + y, h): u32: prove that x + y < 232

▶ cast(x + y): u32: assert that x + y < 232 and crash otherwise

40 / 46

Examples: Numeric types

▶ There are various fixed size integral types, as well as unbounded integer types

τ ::= u8 | u16 | u32 | u64 | nat | i8 | i16 | i32 | i64 | int | . . .

▶ Numeric operations yield their exact untruncated value, so the user must
decide how to cast the value back into range:
▶ (x + y): nat: don’t truncate at all (this can only be used in limited ways)
▶ (x + y) as u32: wrap the result
▶ (x + y): u32: make the type checker prove it is in range (usually only works if

the values of x and y are known)

▶ cast(x + y, h): u32: prove that x + y < 232

▶ cast(x + y): u32: assert that x + y < 232 and crash otherwise

40 / 46

Examples: Numeric types

▶ There are various fixed size integral types, as well as unbounded integer types

τ ::= u8 | u16 | u32 | u64 | nat | i8 | i16 | i32 | i64 | int | . . .

▶ Numeric operations yield their exact untruncated value, so the user must
decide how to cast the value back into range:
▶ (x + y): nat: don’t truncate at all (this can only be used in limited ways)
▶ (x + y) as u32: wrap the result
▶ (x + y): u32: make the type checker prove it is in range (usually only works if

the values of x and y are known)
▶ cast(x + y, h): u32: prove that x + y < 232

▶ cast(x + y): u32: assert that x + y < 232 and crash otherwise

40 / 46

Examples: Numeric types

▶ There are various fixed size integral types, as well as unbounded integer types

τ ::= u8 | u16 | u32 | u64 | nat | i8 | i16 | i32 | i64 | int | . . .

▶ Numeric operations yield their exact untruncated value, so the user must
decide how to cast the value back into range:
▶ (x + y): nat: don’t truncate at all (this can only be used in limited ways)
▶ (x + y) as u32: wrap the result
▶ (x + y): u32: make the type checker prove it is in range (usually only works if

the values of x and y are known)
▶ cast(x + y, h): u32: prove that x + y < 232

▶ cast(x + y): u32: assert that x + y < 232 and crash otherwise

40 / 46

Separation logic

MMC’s type system includes the basic primitives of separation logic, for expressing
complex properties:

Type Concrete syntax Typehood predicate a : − Meaning
∃x : τ1, τ2(x) (ex x: τ1, τ2(x)) ∃x : τ1, a : τ2(x) Existential quantification

∀x : τ1, τ2(x) all x: τ1. τ2(x) ∀x : τ1, a : τ2(x) Universal quantification
τ1 → τ2 τ1 -> τ2 a : τ1 → a : τ2 Non-separating implication
τ1 −∗ τ2 τ1 -* τ2 a : τ1 −∗ a : τ1 Separating imp. (magic wand)
τ1 ∧ τ2 τ1 && τ2 a : τ1 ∧ a : τ2 Non-separating conjunction
τ1 ∗ τ2 (τ1, τ2) a.0 : τ1 ∗ a.1 : τ2 Separating conjunction
τ1 ∨ τ2 τ1 || τ2 a : τ1 ∨ a : τ2 Disjunction
¬τ ∼τ1 ¬ a : τ Negation
ℓ 7→ v ℓ |-> v ℓ 7→ v Points-to assertion
e : τ [e: τ] e : τ Typing assertion
|τ| moved(τ)

∣∣∣ a : τ
∣∣∣ Persistent core of τ

41 / 46

The main function

▶ The theorem to be proved by the MMC compiler depends on the return type
of the main() function:

proc main(): collatz_conjecture {

// if this program succeeds, then the collatz conjecture is true

assert(false) // ...not that I know how to write such a program!

}

42 / 46

The current state of the MM0 project

▶ MM0 is a new system with not many users, and does not compare to
Metamath in terms of formalized material

▶ The project is being developed as open source, and contributions are welcome
▶ There are several MM0 verifiers, written in C, Rust, Haskell
▶ The MMC verifier for MM0 is under construction
▶ The MM1 proof assistant is fairly stable and has already been used for some

pretty big formalization work
▶ The MMC compiler is mostly working for generating executable programs,

but is still very experimental
It is still a research project at this point, but I have every intention to grow this to
an industrial strength project eventually.

43 / 46

The current state of the MM0 project

▶ MM0 is a new system with not many users, and does not compare to
Metamath in terms of formalized material

▶ The project is being developed as open source, and contributions are welcome

▶ There are several MM0 verifiers, written in C, Rust, Haskell
▶ The MMC verifier for MM0 is under construction
▶ The MM1 proof assistant is fairly stable and has already been used for some

pretty big formalization work
▶ The MMC compiler is mostly working for generating executable programs,

but is still very experimental
It is still a research project at this point, but I have every intention to grow this to
an industrial strength project eventually.

43 / 46

The current state of the MM0 project

▶ MM0 is a new system with not many users, and does not compare to
Metamath in terms of formalized material

▶ The project is being developed as open source, and contributions are welcome
▶ There are several MM0 verifiers, written in C, Rust, Haskell

▶ The MMC verifier for MM0 is under construction
▶ The MM1 proof assistant is fairly stable and has already been used for some

pretty big formalization work
▶ The MMC compiler is mostly working for generating executable programs,

but is still very experimental
It is still a research project at this point, but I have every intention to grow this to
an industrial strength project eventually.

43 / 46

The current state of the MM0 project

▶ MM0 is a new system with not many users, and does not compare to
Metamath in terms of formalized material

▶ The project is being developed as open source, and contributions are welcome
▶ There are several MM0 verifiers, written in C, Rust, Haskell
▶ The MMC verifier for MM0 is under construction

▶ The MM1 proof assistant is fairly stable and has already been used for some
pretty big formalization work

▶ The MMC compiler is mostly working for generating executable programs,
but is still very experimental

It is still a research project at this point, but I have every intention to grow this to
an industrial strength project eventually.

43 / 46

The current state of the MM0 project

▶ MM0 is a new system with not many users, and does not compare to
Metamath in terms of formalized material

▶ The project is being developed as open source, and contributions are welcome
▶ There are several MM0 verifiers, written in C, Rust, Haskell
▶ The MMC verifier for MM0 is under construction
▶ The MM1 proof assistant is fairly stable and has already been used for some

pretty big formalization work

▶ The MMC compiler is mostly working for generating executable programs,
but is still very experimental

It is still a research project at this point, but I have every intention to grow this to
an industrial strength project eventually.

43 / 46

The current state of the MM0 project

▶ MM0 is a new system with not many users, and does not compare to
Metamath in terms of formalized material

▶ The project is being developed as open source, and contributions are welcome
▶ There are several MM0 verifiers, written in C, Rust, Haskell
▶ The MMC verifier for MM0 is under construction
▶ The MM1 proof assistant is fairly stable and has already been used for some

pretty big formalization work
▶ The MMC compiler is mostly working for generating executable programs,

but is still very experimental

It is still a research project at this point, but I have every intention to grow this to
an industrial strength project eventually.

43 / 46

The current state of the MM0 project

▶ MM0 is a new system with not many users, and does not compare to
Metamath in terms of formalized material

▶ The project is being developed as open source, and contributions are welcome
▶ There are several MM0 verifiers, written in C, Rust, Haskell
▶ The MMC verifier for MM0 is under construction
▶ The MM1 proof assistant is fairly stable and has already been used for some

pretty big formalization work
▶ The MMC compiler is mostly working for generating executable programs,

but is still very experimental
It is still a research project at this point, but I have every intention to grow this to
an industrial strength project eventually.

43 / 46

On program synthesis

▶ MMC has a strong type system, and things that typecheck must follow their
functional specification

▶ Program synthesis is necessarily doing deductive verification
▶ What this language brings to the table is to take those high level proofs and

lower them to fully formal proofs about the resulting assembly code

44 / 46

On program synthesis

▶ MMC has a strong type system, and things that typecheck must follow their
functional specification

▶ Program synthesis is necessarily doing deductive verification

▶ What this language brings to the table is to take those high level proofs and
lower them to fully formal proofs about the resulting assembly code

44 / 46

On program synthesis

▶ MMC has a strong type system, and things that typecheck must follow their
functional specification

▶ Program synthesis is necessarily doing deductive verification
▶ What this language brings to the table is to take those high level proofs and

lower them to fully formal proofs about the resulting assembly code

44 / 46

Conclusion

▶ Metamath is a really simple language which can express complex math

▶ But we can get the benefits without making things hard for users
▶ The MM1 proof assistant is my vision for how to marry a Metamath-like

backend to a Lean-like frontend, and you can play with it today
▶ The MMC language design is similar to a programming language with

contracts like Dafny /Why3, but unlike these the proofs aren’t just “skin
deep”, they are synthesized into a full proof at the low level, through the
entire compiler

▶ It still remains to be seen if these kind of languages are actually usable in
practice, but it could be a game-changer, bringing the task of writing formally
verified programs down to the level of the average proof assistant user.

45 / 46

Conclusion

▶ Metamath is a really simple language which can express complex math
▶ But we can get the benefits without making things hard for users

▶ The MM1 proof assistant is my vision for how to marry a Metamath-like
backend to a Lean-like frontend, and you can play with it today

▶ The MMC language design is similar to a programming language with
contracts like Dafny /Why3, but unlike these the proofs aren’t just “skin
deep”, they are synthesized into a full proof at the low level, through the
entire compiler

▶ It still remains to be seen if these kind of languages are actually usable in
practice, but it could be a game-changer, bringing the task of writing formally
verified programs down to the level of the average proof assistant user.

45 / 46

Conclusion

▶ Metamath is a really simple language which can express complex math
▶ But we can get the benefits without making things hard for users
▶ The MM1 proof assistant is my vision for how to marry a Metamath-like

backend to a Lean-like frontend, and you can play with it today

▶ The MMC language design is similar to a programming language with
contracts like Dafny /Why3, but unlike these the proofs aren’t just “skin
deep”, they are synthesized into a full proof at the low level, through the
entire compiler

▶ It still remains to be seen if these kind of languages are actually usable in
practice, but it could be a game-changer, bringing the task of writing formally
verified programs down to the level of the average proof assistant user.

45 / 46

Conclusion

▶ Metamath is a really simple language which can express complex math
▶ But we can get the benefits without making things hard for users
▶ The MM1 proof assistant is my vision for how to marry a Metamath-like

backend to a Lean-like frontend, and you can play with it today
▶ The MMC language design is similar to a programming language with

contracts like Dafny /Why3, but unlike these the proofs aren’t just “skin
deep”, they are synthesized into a full proof at the low level, through the
entire compiler

▶ It still remains to be seen if these kind of languages are actually usable in
practice, but it could be a game-changer, bringing the task of writing formally
verified programs down to the level of the average proof assistant user.

45 / 46

Conclusion

▶ Metamath is a really simple language which can express complex math
▶ But we can get the benefits without making things hard for users
▶ The MM1 proof assistant is my vision for how to marry a Metamath-like

backend to a Lean-like frontend, and you can play with it today
▶ The MMC language design is similar to a programming language with

contracts like Dafny /Why3, but unlike these the proofs aren’t just “skin
deep”, they are synthesized into a full proof at the low level, through the
entire compiler

▶ It still remains to be seen if these kind of languages are actually usable in
practice, but it could be a game-changer, bringing the task of writing formally
verified programs down to the level of the average proof assistant user.

45 / 46

Resources

▶ Metamath: http://us.metamath.org/
▶ Metamath Zero: https://github.com/digama0/mm0
▶ MM0 Youtube tutorial: https://youtu.be/A7WfrW7-ifw
▶ MM0 thesis: https://digama0.github.io/mm0/thesis.pdf
▶ Lean/mathlib: http://leanprover-community.github.io/
▶ Lean Zulip chat: https://leanprover.zulipchat.com/
▶ Ask me anything on Zulip, I’m there a lot

Thanks!

46 / 46

http://us.metamath.org/
https://github.com/digama0/mm0
https://youtu.be/A7WfrW7-ifw
https://digama0.github.io/mm0/thesis.pdf
http://leanprover-community.github.io/
https://leanprover.zulipchat.com/

	Introduction

