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Postdoc in Logic at CMU
Proof engineering since 2013

> Metamath (maintainer)

» Lean 3, Lean 4 mathlib (maintainer)

> Dabbled in Isabelle, HOL Light, Coq, Mizar
> Metamath Zero (author)

Proved 37 of Freek’s 100 theorems list in Metamath
Lots of library code in set.mm and mathlib

My PhD thesis was about Metamath Zero

Say hi at https://leanprover.zulipchat.com
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Part I: Metamath
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Metamath is:

> A computer language for writing mathematical proofs
> A program metamath.exe to verify proofs in the Metamath language

> A library of completed proofs in a wide variety of axiomatic systems
> set.mm: Over 40000 proofs deriving consequences of ZFC
> Covers material in set theory, category theory, real analysis, calculus, number
theory, algebra, topology, linear algebra, lattice theory, graph theory
> 74 from Freek Wiedijk’s 100 theorems list, which puts it 4th on the list behind HOL
Light, Isabelle, and Coq
> iset.mm: 10000 proofs in intuitionistic ZF
> nf.mm: 5900 proofs in NF set theory
> gl.mm: 1100 proofs in quantum logic
» Other databases: hol.mm, dtt.mm, peano.mm, miu.mm
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Metamath looks like: (set.mm)

vod22

66523 $( Function with a domain of two different values. (Contributed by FL,

66524 26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) $)

66525 fprg $p - ( ((Ae.VABe. W) A (Ce. XADe. Y)AA==B)
66526 > {<.A,C> ,<.B,D> }F{A,B})$=

66527 ( wcel wa wne w3a cop cpr wfun cdm wceq wfn funprg dmpropg 3ad2ant2 df-fn
66528 sylanbrc ) AEIBFIJZCGIDHIJIZABKZLACMBDMNZC B JDUIUFACB
66529 DGHTUAUGUHUBUC §$.

66530

66531 $( Function with a domain of three different values. (Contributed by

66532 Alexander van der Vekens, 5-Dec-2017.) $)

66533 fntpg $p - ( ((Xe. UA Ye. VA Ze W)

66534 A (Ae. FABe. GACe. H)

66535 A(X=F=YAXF=ZAYF=2))

66536 S {<.X,A> , <. Y,B> ,<.Z,C>.}tF{X,Y,z})s$=
66537 ( wcel w3a wne cop cdm wceq csn cun ctp wfun wfn funtpg wa dmsnopg 3ad2antl
66538 cpr 3ad2ant2 jca uneql2 syl df-pr syléeqr dmeqi eqeqli dmun sylibr 3ad2ant3|
66539 bitri uneqi2d df-tp eqtri 3eqtrdg df-fn sylanbrc ) IDMKHMLIMNZAEMZBFMZCGMZN
66540 23IKOILOKLONZNZ JAPZKBPZLCPZUAZUBVQQZ JIKLUAZRVQVSUCABCDE FGHI JKLUDVMVNVOUHZQZVP
66541 SZQZTZIKUHZLSZTVRVSVMWAWEWCWFVMVNS ZQZVOSZQZTZWERZWAWERZVMWK ISZKSZT ZWEVMWHWN
66542 RZWIWORZUE. TWQY I JAEUFUGVIVHWRVIKBFUFUIUIUIWHWNWIWOUKU
66543 TZQZWERWLWAXAWEVTWT UQUPUTURVKVGWCWFRZVLY IV
66544 HXBVILCGUFUSUIVAVRVTWBTZQWDVQXCVNVOVPVBUOVTWBUQVCJKLVBVDVQVSVEVF $.

66545

66546 ${

66547 fntp.1 $e - Ae. _V §.

66548 fntp.2 $e - Be. V$

66549 fntp.3 $e - Ce. V§.

66550 fntp.4 $e - De. _V§$.

66551 fntp.5 $e - E e. _V $.

66552 fntp.6 $e - Fe. _V $.

66553 $( A function with a domain of three elements. (Contributed by NM,

66554 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)

66555 fatp $p W ( (A== B A A== CAB==C)

66556 > {<A,D> ,<.B,E> ,<.C,F> }Fm{A,B,C})S$
66557 ( wne w3a cop ctp wfun cdm wceq wfn funtp dmtpop ali df-fn sylanbrc ) ABM
66558 ACMBCMNZADOBEOCFOPZQUGRABCPZSZUGUHTABCDE FGHI JKLUAUTUFADBECF JKLUBUCUGUHUDU
66559

66560 $}

AA5A1
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Metamath looks like: (mmj2)

File

Edit Cancel Unify Search TL GMFF Help

$(

*

dl
d2
d3
d4
qe

* More generally, mmj2 will

<MM> <PROOF_ASST> THEOREM=95ple96 LOC_AFTER=
Page502.mmp

If mmj2 is given no reference and no hypotheses, and isn't allowed
to use its automation capabilities, then unsurprisingly mmj2 can't
prove the simple claim that 95 + 1 = 96.

But by adding the '!' prefix, mmj2 was allowed to use its automation
capabilities, and mmj2 quickly cdeated the following proof:

|- 9 e. NNO
|- 5 e. NNO
ple6 - (5+1) =28
::eqid I-; 95=;95
d:dl,d2,d3,d4:decsuc |- ( ; 9 5+ 1) =; 9 6

- only the ref (mmj2 will create the statement and derive the steps)
- The ref and hyps (mmij2 will create the statement)

generally be able to finish a step if you provide:

[}

I-PA-0119 Theorem 95ple96: RPN-format Metamath proof generated!
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Metamath looks like: (MPE)

X, Metamath Proof Explorer

Mirrors > Home > MPE Home > Th.List > ruc Structured version Visualization version GIF version

< Previous Next >
Nearby theorems

Theorem ruc ws:
Description: The set of positive integers is strictly dominated by the set of real numbers, i.e. the real numbers are uncountable. The proof consists of
lemmas ruclem1 v through ruclem13 .« and this final piece. Our proof is based on the proof of Theorem 5.18 of [Truss] p. 114. See ruclem13 ws: for
the function existence version of this theorem. For an informal discussion of this proof, see html#uncountable. For an alternate proof see
TucALT ue:. This is Metamath 100 proof #22. (Contributed by NM, 13-Oct-2004.)
Assertion

Proof of Theorem ruc

Step| Hyp Ref Expression

1 [reex o sFReEV

2 nnssre s sENCR

= ssdomg s :FReEV->(NCR—->N<R)
4 [1,2,3 |mp2-s :FNR

5 ruclem13 wsssf s - - f:N-onto—R

6 f10f0 5 - (/:NA11-onto—>R — f:N-onto—R)|
7 5, 6 Imto s s b = fiN-1-1-onto—R

P nex o 3 F = 3f fiN-11-onto—R

9 [bren 7 2 (N~ R < 3f f:N-11-onto—>R)
10 8,9 imtbir s: :FaN~R

11 Ibrsdom &0 :F(N<Ro(NSRA-N=xR))
12 14,10, 11jmpbir2an s . -N<R

Colors of variables: wif setvar class

Syntax hints: -wn s Jwex 10: € weel 190 Vevw w201 Cwss w7 class class class whr

2 ax-4 1737 ax-5 15 ax-6 185 ax-7
N 015 aX: a

—onto—»wf0 5200 —1-1-onto—Wfl0 5201~ cen 797 < cdol <csdm 797 RCT 9957 Nen

5 ax-8 1992 ax-9 199 ax-10 209 ax-11 2014 ax-12 207 ax 13 2266 ax-ext 203
so ax-addrel 10019 ax-mulcl 1020 ax-mulrel ax-mulcom 10
ax-pre-lttri 1032 ax-pre-lttrn ax-pre- ltadd 1003¢ @x-pre-

This theorem was proved from axioms: zp s & s 21 axd s axgen
ow s 2]
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Metamath’s good ideas

Metamath is not the most popular theorem prover,
but it has some good ideas that are not shared with its contemporaries.

What makes Metamath unique?
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Metamath’s good ideas

> Separate proof authoring from proof checking

» Have a simple spec for the logical core
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Metamath’s good ideas

> Separate proof authoring from proof checking
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Separate proof authoring from proof checking

> Interactive theorem provers need to support two activities:
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Separate proof authoring from proof checking

> Interactive theorem provers need to support two activities:

> Writing / authoring proofs
> Checking proofs

» The design criteria for these two are completely different

> Writing happens once, checking happens many times
> Checking is often performed as part of CI
> Writing involves human interaction and creativity

> Writing needs a proof assistant, proof checking needs a kernel

> A good proof assistant is big and complex to give a good user experience
> A good kernel is small and trustworthy
(and ideally fast and not resource-intensive)
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Separate proof authoring from proof checking

> Metamath stores proofs, not proof scripts

66523
66524
66525
66526
66527
66528
66520
66530
66531
66532
66533
66534
66535
66536
66537
66538
66539
66540
66541
66542
66543
66544
66545
66546
66547
66548
66549
66550
66551
66552
66553
66554
66555
66556
66557
66558
66550
66560
ARSAT

$( Function with a domain of two different values. (Contributed by FL,
26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) $)
f"P'EspF(((As.v/\xe.w)/\([e.XADe.V)/\A*E)
L€ A,C> ,<.B,D> FEn{A,B})S:
( wce\ wa wne w3a cop cpr wfun cdm wceq wfn funprg dmpropg 3ad2ant2 df-fn
sylanbrc ) AEIBFIJZCGIDHIIZABKZLAC
DGHTUAUGUHUBLC $.

$( Function with a domain of three different values. (Contributed by
Alexander van der Vekens, 5-Dec-2017.) $)
ftpg $p - (((Xe. UAYe. VA Ze W)
(Ae.F/\Be,G/\Ce.N)
(X==YAXFE=ZAYHE2))
A).,<.V,B>.,<.Z,C>.)Fn(x,v,l))$:
( wcel w3a wne cop cdm wceq csn cun ctp wfun wfn funtpg wa dmsnopg 3ad2antl
cpr 3ad2ant2 jca uneql2 syl df-pr syléeqr dmeqi eqeqli dmun sylibr 3ad2ant:
bitri uneql2d df-tp eqtri 3eqtrag df-fn sylanbrc ) JOMKHMLIMNZAEMZBFMZCGMZN
ZIKOJLOKLONZNZJAPZKBPZLCPZUAZUBVQQZ JKLUAZRVQVSUCABCDE FGHI JKLUDVMVNVOUHZQZVP

n

SZQZTZIKUHZL 3ISZKSZTZWEVMHHUN
REUWORZUEZHKNBRYKVGNSVLVKWQURYHVIWGY ) AEFUGVIVHWRYJKS FUFUTU JUTHHNVWOUKY
ERWLWAXAWEVTWT WFRZVLVIV
HavILG a KLY 3.
${
fatp.1 ge - Ae. v §
ftp.2 $e |- B e. V§.
ftp.3 §e b Ce. V$.
ftp.4 $e - De. V$
ftp.5 $e - Ee. V$.
ftp.6 $e b F e
$C A function with a domain of three elements. (Contributed by N,
14-5ep-2011.)  (Revised by ario Carneiro, 26-Apr-2015. ) %)
ftp $p - ( (A =+ c *c)
SYm{A,B,C})$
( wne w3a cop ctp wfun i wceq wfn funln ﬂmwop ali df-fn sylanbrc ) ABM
\CHBCHNZADOBEOCFOPZQ! DEFGHIIKL FIKLUBUCUGUHUDU
$
$}
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Separate proof authoring from proof checking

> Metamath stores proofs, not proof scripts

» Checking metamath proofs is massively faster than
checking Lean, Coq, Isabelle, HOL Light proofs
> The classic verifier metamath.exe checks set.mm, a
library on the same order of magnitude as Lean
mathlib, in 8 seconds

66523
66524
66525
66526
66527
66528
66520
66530
66531
66532
66533
66534
66535
66536
66537
66538
66539
66540
66541

66542
66543
66546
66545
66546
66547
66548
66549
66550
66551
66552
66553
66554
66555
66556
66557
66558
66550
66560
ARSH

$( Function with a domain of two different values. (Contributed by FL,
26-3un-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) $)
f”PFESDF(((As VABe.W)A(Ce.XADe.Y)AA==B)
<A, C> ,<.B,D> FEn{A,B}) S
( wce\ wa wne w3a cop cpr wfun cdm wceq wfn funprg dmpropg 3ad2ant2 df-fn
sylanbrc ) AEIBFIJZCGIDHIIZABKZLAC
DGHTUAUGUHUBLC $.

$( Function with a domain of three different values. (Contributed by
$

Alexander van der Vekens, 5-Dec-2017.) $)
fitpg $p - (((Xe. UAYe VA Ze W)
A(Ae. FABe.GACe H)
ACXE=YAXAEZAY=2))
S X, A> <Y, B> ,<.Z,Co bEn{X,Y,2})8

( weel w3a wne cop cdm wceq csn cun ctp wfun wfn funtpg wa dnsnopg Sad2antl
cpr 3ad2ant2 jca uneq12 syl df-pr syléeqr dmeqi eqeqli dmun sylibr 3ad2ant:
bitri uneqi2d df-tp eqtri 3eqtrag df-fn sylanbrc ) JOMKHMLIMNZAEMZBFMZCGMZN
23K0ILOKLONZNZJAPZKBPZLCPZUAZUBVQQZ JKLUAZRVQYSUCABCDE FGHT JKLUDVMVNVOUHZQZVP

SZQZTZIKUHZL 3ISZKSZTZWEVMHHUN
RZWIWNORZUEZWKWPRVKVGHSVLVKWNRVHYIWQY I JAEUFUGY TVHWRY IKBFUFUTUJUTWHWNINOUKU
L TZQZWERHLWAXAWEVTYT WFRZVLVIV
HXBVILCG TWETZQUD KLY 3.

${
ftp.1 $e - Ae. LV §.
ftp.2 $e |- B e. V§.
ftp.3 §e b Ce. V$.
fatp.4 $e - De. v $.
ftp.5 $e - Ee. V$.
tp.6 $e - Fe. V§
$( A function with a domain of three elements. (Contributed by MM,

14-5ep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) $)
ftp $p - ( (A == 8 /\A#CI\B#C)

F> }Fm{A,B,C})$=
( wne w3a cop ctp wfun cdm wceq wfn funtp dmtpop ali df-fn sylanbrc ) ABM

\CHBCHNZADOBEOCFOPZQL DEFGHTIKL FIKLUBUCUGUHUDU
E$.
$}
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Separate proof authoring from proof checking

66523 | $( Function with a domain of two different values. (Contributed by FL
66524 26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) $)
66525 fnprgspk(((ksv/\ﬂew)/\((eXADsV)/\A#:E)
66526 <.A,C> ,<.B,D> }tFm{A,B})S$=
66527 4 wce\ wa wne w3a cop cpr wfun cdm wceq wfn funprg dmpropg 3ad2ant2 df-fn
66528 sylanbrc ) AEIBFIJZCGIDHIJZABKZLACH
66529 DGHTUAUGUHUBUC §.
» Metamath stores proofs not proof scripts G651 | S( Function with o donain of three difforent values. (Contributed by
4 66532 Alexander van der Vekens, 5-Dec-2017.) $)
66533 | fntpg $p - (( (X e UA Ye. VA Ze. W)
66534 A(Ae. FABe.GACe. H)
. . . 66535 { /\(X:tV/\)(:ﬁ:Z/\V:ﬂ:Z))} ¢ s
» Checking metamath proofs is massively faster than 0 b b S derd i S i bl it s
: : o B e L s Lo i R A
checking Lean, Coq, Isabelle, HOL Light proofs AR e Rl Ko B e
. .. 66542 RZWIWORZUEZWKWPRVKVGWSVLVKWQWRVHVIWQV JJAEUFUGVIVHWRVIKBFUFUIUJUTWHWNWIWOUKU
> The classic verifier metamath.exe checks set.mm, a G DT cuezauL
library on the same order of magnitude as Lean R
. . 66548 fntp.2 $e - Be. V$.
mathlib, in 8 seconds Gy fpaset ce VS
66550 fatp.4 $e - De. _V§$.
. . . (e . 66551 fatp.5 $e - Ee. V$.
> An optimized metamath verifier has achieved the @2 e se i re Vs
66553 $C A function with a domain of three elements. (Contributed by N,
. 66554 14-5ep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) $)
same feat in 0.9 seconds s A B A A A C)
66556 > {<A,D>, < E> , <. C,F>. }Fm{A,B,C})S$=
66557 ( wne w3a cop ctp wfun cdm wceu wfn funtp dmtpop ali df-fn sylanbrc ) ABM
66559 ES$.
66560 $1
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Metamath’s good ideas

» Have a simple spec for the logical core
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Have a simple spec for the logical core

> Metamath has a prose specification
in the Metamath book

112 CHAPTER 4. THE METAMATH LANGUAGE

‘The next section contains the complete specification of the Metamath
language. It serves as an authoritative reference and presents the syntax
in cnough detail to write a parser and proof verifier. The specification is
terse and it is probably hard to learn the language directly from it, but we
include it here for those impatient people who prefer to see everything up
front before looking at verbose expository material. Later sections explain
this material and provide We will rep

and you may skip the next section at first reading and proceed to

Section[L3] (p. [I1§)

t the definitions in those

4.1 Specification of the Metamath Language

Sometimes one has to say difficult things, but one ought to say
them as simply as one knows how.

G. H. HarosE

4.1.1 Preliminaries

A Metamath database is built up from a top-level source file together with
any source files that are brought in through file inclusion commands (see
below). The only characters that are allowed to appear in a Metamath source
file are the 94 non-whitespace printable Ascil character ) are digits,
upper and lower case letters, and the following 32 special characters:

s ie () %+
< er\N] " ‘(\}"

plus the following characters which are the “white space” characte
(a printable character), tab, carriage return, line feed, and form feed. We
will use typewriter font to display the printable characters

A Metamath database consists of a sequence of three kinds of tokens
separated by white space (w amy sequence of one or more white
characters). The set of keyword tokens is $1, 8}, Sc, Sv, S, Se, $d,
$a, $p, $., =, $(, §), $[, and 8]. The last four are called auxiliary or
preprocessing keywords. A label token consists of any combination of letters,
digits, and the characters hyphen, underscore, and period. A math symbol
token may consist of any combination of the 93 printable standard Ascr
characters other than space or § . All tokens are case-sensitive.

TAs quoted in [16), .
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Have a simple spec for the logical core

> Metamath has a prose specification
in the Metamath book
> The full spec is 28 pages (with lots
of explanation and examples)

12 CHAPTER 4. THE METAMATH LANGUAGE

The next section contains the complete specification of the Metamath
languay wn authoritative reference and presents the st
in enough detail to write a parser and proof verifier. The specifica
terse and it is probably ot Yt the ongunge discetly from it, but e
include it here for those impatient people who prefer to s vthing up
front befor looking at verbose expository matcrial. Later scctions explin
erial and provide the do
d you

nitions in those

ling and proceed to

4.1 Specification of the Metamath Language

Sometimes one has to say difficult things, but one ought to say
them as simply as one knows how.

G. H. HarosE

4.1.1 Preliminaries

A Metamath database is built up from a top-level source file toge
any source files that are brought in through file inclusion commands (see
below). The only characters that are allowed to appear in a Metamath source
file are the 94 non-whitespace printable Ascir ch
upper and lower case letters, and the following 32 special characters:

er with

acters, which are digits,

plus the following characters which are the “white spac:
(a printable chara riage return, line feed,
will use typewriter font to display the printable characte

A Metamath database consists of a sequence of three kinds of tokens
separated by white space (which is any sequence of one or more white
space characters of keyword tokens is ${. $}, $c. $v. 81, Se, $d,
$a. $p, § and $] t four are called auxiliary or
preprocessing ke Alabel toke ts of any combination of letters
digits, and the characters hyph ud period. A math symbo
token may consist of any combination of the 93 printable standard Ascr
characters other than space or § . All tokens are case-sensitive.

characters: space
nd form feed. We

con

%As quoted in [10], p. 273
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Have a simple spec for the logical core

> Metamath has a prose specification
in the Metamath book

> The full spec is 28 pages (with lots
of explanation and examples)

» There is an emphasis on parsimony
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characters: space
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separated by white space (which is any sequence of one or more white
space characters of keyword tokens is ${. $}, $c. $v. 81, Se, $d,
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Have a simple spec for the logical core

» Metamath has a prose specification
in the Metamath book

> The full spec is 28 pages (with lots
of explanation and examples)

» There is an emphasis on parsimony

» The HTML documentation is full of
pages of introductory material
which assumes no mathematical
background

Theorem opreqZi
Description: Equality inference for eperations

Hypothesis
Ref Expressinn|
oprealil- A= &
N A=B
Assertion
Ref Expression 2=1+1)
opreq2i|- (CFA)=(CFE)
Proof of Theorem 2p2ed
(S = (8D [Step| Hyp | Ref Expression
1 a2 F2=(1+1
G -Gty [ 2 (Lt
g | L6prea2i |- (8 4+ 2) = (2 4+ (1 4+ 1))
[z [4fa 4 (3L
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Have a simple spec for the logical core

» Consequence: Many verifiers
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Have a simple spec for the logical core

» Consequence: Many verifiers
» There are 19 known verifiers
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Have a simple spec for the logical core

» Consequence: Many verifiers
» There are 19 known verifiers
> written in C, C++, C#, Rust, Lua, Haskell, Python, Igor, JavaScript,
Mathematica, Julia, Scala, Java, Zig, Lean 4
> ..and Turing Machine

> A metamath verifier was adapted to prove the best known lower bound on the
smallest unprovable-in-ZFC busy beaver number!

» Many verifiers are tiny, and some are fast

» There are also multiple proof assistants

» The main ones in use are MM-PA and mmj2, and another one (metamath-knife) is in
development

> Metamath has also been used for machine learning (Holophrasm, GPT-f)

1https://github.com/sorear/metamath-turing-machines
14/46


https://github.com/sorear/metamath-turing-machines

Metamath for AI/ML/ATP applications

» Metamath is a very friendly language for bulk processing, because it has such
a simple grammar and few core concepts

> In many cases you can get relevant and accurate information about theorem
structure using regexes

> There is only one kind of proof step (a theorem application), so proofs are just
trees of applications and verification is uniform

> It also has a large body of human-curated mathematics, which is good for
training and testing automated provers

> Verification and processing is quite fast, so the bottleneck is usually the
external processing (the ATP, ML training etc)
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Deficiencies of Metamath

> Metamath tries to simultaneously serve the human
reader and the computer verifier, but they have S| iy g of o it g, Cotas b 1,

66526 26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)

. 665: f1 $ [ - W) ( ) = B)
divergent needs e RGOS Y AN I AL e

66527 ( wcel wa wne w3a cop cpr wfun e wceq wfn funprg dmpropg 3ad2ant2 df-fn
66528 sylanbrc ) AEIBFIJZCGIDHIJZABKZLACH

66529 DGHTUAUGUHUBUC §.

66530

66531 | $( Function with a domain of three different values. (Contributed by

66532 Alexander van der Vekens, 5-Dec-2017.)

66533 fntpg $p - (((Xe. UAYe VA Ze W)

66534 A(Ae. FABe GACe H)

66535 ACX==YAXF=ZAY+=2))

66536 Sl X, A> Y, B>, <2, Co b {X,Y,2}) %=
66537 ( weel w3a wne cop cdm wceq csn cun ctp wfun wfn funtpg wa dnsnopg 3ad2ant1
66538 cpr 3ad2ant2 jca uneql2 syl df-pr sylbeqr dmeqi eqeqli dmun sylibr 3ad2ant3|
66539 bitri uneq12d df-tp eqtri 3eqtrag df-fn sylanbrc ) JDMKHMLIMNZAEMZBFMZCGMZN
66540 Z3KOILOKLONZNZIAPZKBPZLC] IKLUAZRVQUSUCABCDEFGHL KL

66561 SZQZTZIKUHZL: KSZTaE VN
66542 RZW. v 3 VKRFUFUXUJUIWHWNWJWDUKU
66543 L TZQZVERWLWAXAWEVTHT WFRZVLVIV
66544 HXBVILCG QU KL

66545

66546 $

66547 ftp.1 $e - Ae. VS,

66548 tp.2 $e - Be. LV $.

66549 ntp.3 $e |- Ce. LV §.

66550 ftp.4 $e |- D e. LV §.

66551 ftp.5 $e b Ee. V§.

66552 fntp.6 $e k- Fe. v $.

66553 $CA funceion with o donain of three elenents. (Contributed by NM,

66554 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) §)

66555 ftp $p - ((A==8 AA==CAB==C)

66556 > {<A,D> ,<.B,E> ,<.C,F> }Fm{A,B,C})
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66560 $}
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frprg $p - (((Ae.VABe.W)A(Ce.XADe.Y)AA==B)
S <A, Co , <. B,D> FFn{A,B}) S
( weel wa wne w3a cop cpr wfun cdm weeq wfn funprg dmpropg 3ad2ant2 df-fn
sylanbrc ) AEIBFIJZCGIDHIJZABKZLACH
DGHTUAUGUHUBUC $.

$( Function with a domain of three different values. (Contributed by
Alexander van der Vekens, 5-Dec-2017.)
Ftpg $p - ( ( (Xe. UAYe VAZe W)
ACAe. . .

ACX==YAXF=ZAY+=2))

S <X, A> <Y, B> , < Z,C> bm{X,Y,2})s=
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L TZQZWERWLWAXAWEVTHT WFRZVLVIV
HXBVILCS QuD! KL .

$
fntp.1 $
ntp.2 $
ntp.3 $
ntp.4 $
fntp.s $

fntp.6 $e - F e. .

$( A function with a domain of three elements. (Contributed by NM,
14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) §)

fatp Sp - ((A=*=BAA=~=CAB=%=C)

> {<A,D> ,<.B,E> ,<.C,F> }m{A,B,C})S$

( wne w3a cop ctp wfun cdm wceq wfn funtp dmtpop ali df-fn sylanbrc ) ABM
ACHBCHNZADOBEOCFOPZQUGRABCPZS ZUGUHTABCDEFGHI JKLUAUTUFADBECF JKLUBUCUGUHUDU
ES$.

$}
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$( Function with a domain of two different values. (Contributed by FL,

26-2u

(Revised by Mario Carneiro, 26-Apr-2015.) $)
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- i<
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$( Function with a domain of three different values. (Contributed by

ftpg $p - (((Xe. UA Ye VA Ze.
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- { <
( weel w3a wne

der Vekens, 5-Dec-2017.)

W)
A(Ae. FABe GACe H)
ACX==YAXF=ZAY+=2))
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fntp.6 $e k- Fe. v $.
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> The big block of compressed proof text is very
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» Metamath automation is decentralized
> This is nice in principle, but in practice most people
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Deficiencies of Metamath

> Metamath tries to simultaneously serve the human
reader and the computer verifier, but they have
divergent needs

> The big block of compressed proof text is very
off-putting for newcomers, and not great for source
control either

> In practice you need a tool to read proofs

> Metamath automation is decentralized

> This is nice in principle, but in practice most people
won't be writing their own proof assistant

> Metamath has a reputation for having no automation
as a result

> Existing MM proof assistants are certainly lacking in
small scale automation compared to HOL light,
Isabelle, Coq, Lean

$( Function with a domain of two different values. (Contributed by FL,
26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) $)
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Metamath Zero

> Metamath Zero is a project I started in 2019 to solve the problem of
bootstrapping a theorem prover

» Double down on all the things that make Metamath great for metatheory
> Keep it simple, but expressive
> The “one rule” of Metamath is a universal computing machine — users can
effectively write the language they want to verify using lemmas

> Make it more automation friendly

> Fix some asymptotic complexity issues in metamath (DAG sharing all the things)
> Use trees for the internal representation instead of token strings
> Have a metaprogramming language for the front end (a tactic language)

> Give it a more modern-looking syntax
> shamelessly borrowed from Lean
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Software without bugs is possible

> Bugs in software are generally thought to be inevitable

> Software correctness is increasingly important as people rely on software in
critical infrastructure

> Testing is only an incomplete solution, since checking all inputs is infeasible
for most programs

> Software correctness is a mathematical question

> Software is a logical construct
> Software specifications are mathematical statements

— Software correctness can be proved by mathematical proof (“deductive
verification”)
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» Those that do often only do so at a surface level, leaving users to trust the
programming language
> Compilers have bugs too
> Even if the compiler is verified (most aren’t), it doesn’t help if the compiler
faithfully translates your bugs
> We need a language to help people write verified programs

Metamath C is a language for writing verified programs.
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> Simple structure
» Standalone verifier
> “small trusted kernel”

» MM1: The proof assistant — produces MMO proofs
> Runs tactics and metaprograms and exports MMO proofs
» MMC: A proof-producing compiler
> A programming language for producing (x86) programs with a proof of
correctness
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Metamath Zero Architecture

» MMO: The logic and specification language
» MM1: The proof assistant
MMC: A proof-producing compiler

v

We use MM1 to write proofs in the MMO logic

We use MM1 as a framework to run the MMC compiler
The MMC compiler produces MMO proofs

The MMO verifier is written in MMC? - bootstrap!

vV v.yvyy

2Currently the MMC verifier for MMO is not finished, but there are multiple other MMO verifiers

so it can already be used without the bootstrap.
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A simple MMO file: propositional logic

delimiter $ (~$ $ ) $;
strict provable sort wff;
term im (a b: wff): wff; infixr im: $->$ prec 25;
term not (a: wff): wff; prefix not: $~$ prec 40;

-- The Lukasiewicz axioms for propositional logic
axiom ax_1 (a b: wff): $a ->b ->a $;
axiom ax_2 (a b c: wff):

$(@a->b->c) ->(a->b) ->a ->c5$;
axiom ax_3 (a b: wff):

$ (@ ->~b) ->b ->as;
axiom ax_mp (a b: wff):

$a->bs>

$as>

$bs;

-- Assert that ‘P -> P’ is provable
theorem id (P: wff): $ P -> P §;
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Peano arithmetic

-- predicate logic

--| The sort of natural numbers, or nonnegative integers.
sort nat;

--] ‘0 is a natural number.

term dO: nat; prefix d0: $0$ prec max;

--| The successor operation: ‘suc n‘ is a natural number when ‘n‘ is.
term suc (n: nat): nat;

--| Zero is not a successor. Axiom 1 of Peano Arithmetic.

axiom sucne@ (a: nat): $ suc a !'=0 $;

--| The successor function is injective. Axiom 2 of Peano Arithmetic.

axiom sucinj (a b: nat): $ suc a = suc b <->a =b $;

--| The induction axiom of Peano Arithmetic. If ‘p(0)‘ is true,

--] and ‘p(x)‘ implies ‘p(suc x)‘ for all ‘x‘, then ‘p(x)‘ is true for all ‘x’.

axiom induction {x: nat} (p: wff x):
$10/x1p->A.x(p->[sucx/x1p)->A xp§$;

‘
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Peano arithmetic

--|] Addition of natural numbers, a primitive term constructor in PA.

term add (a b: nat): nat; infixl add: $+$ prec 64;

--| Multiplication of natural numbers, a primitive term constructor in PA.
term mul (a b: nat): nat; infixl mul: $x$ prec 70;

--|] Addition respects equalty.

axiom addeq (a b c d: nat): $a=b ->c=d ->a +c
--| Multiplication respects equalty.

axiom muleq (@ b cd: nat): $a=b ->c=d->axc=>b=xd3§$;
--| The base case in the definition of addition.

axiom addO® (a: nat): $a +0 =a$;

--| The successor case in the definition of addition.

axiom addS (a b: nat): $ a + suc b = suc (a + b) $;

--| The base case in the definition of multiplication.

axiom mul@® (a: nat): $a x 0 =0 $;

--| The successor case in the definition of multiplication.
axiom mulS (a b: nat): $a *sucb=ax*xb+a}$;

b+ds;
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Peano arithmetic

» Peano arithmetic is a very simple axiomatic system, but also quite expressive
We define:

>

vV VvV vV vy YV VY

Propositional logic

Predicate logic

Class theory

+, =, %/, mod, gcd

even, odd, disjoint sums
ordered pairs, cartesian product
finite functions, class functions

Integers: +, —, %, /, mod

vV vV vV vy vV VY

Bitwise operators
Recursion, exponentiation
Lists

Set operators

finite sets, finite set theory
cardinality

List ops: length, append, repeat,
reverse, map, join, filter, zip, ...
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Metaprogramming with MM1

» MMI1 comes with a metaprogramming language based on Scheme

do {
(display "hello world") -- hello world
{2 + 2} -- 4
(def x 5)
{x + x} -- 10
(def (fy) {y +y})
(f 3) -- 6
(def (fact x)
(if {x = 0}

1

{x * (fact {x - 1})}))
(fact 5) -- 120

}
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Metaprogramming with MM1

» MMI1 comes with a metaprogramming language based on Scheme
> We can use this to implement tactics to prove simple classes of theorems
> We can prove basic arithmetic theorems this way:

theorem _: $ ,19 % ,120 + ,2 = ,2282 $ = norm_num;

> theorem _ means it is an example
> norm_num is the tactic which proves the theorem
> 19 calls a preprocessor to render 19 as a term. The actual theorem proved is:

theorem _: $ (x1 :x x3) * (X7 :x x8) + x2 = (x8 :x xe :x xa) $;

that is, 0x13 - 0x78 + 0x2 = 0x8ea which is the theorem written in hexadecimal
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Working with MM1

Activities 3 Visual tudio Code ~

) File Edit Selection View Go Run Terminal

1UNSAVED.

= 02-mm0-intro.mm0

27|

Sundan3 608PM

Help © 03-mm1-intro.mm1 - metamatho - Visual Studio Code

= o3mmi-intrommi ®
torial

provable sort wff;

term wff > wff > wff;
i $-8 prec 25;

wff > wff;
$~3 prec 100;

axiom ax_1 (a b: wff): $a > b > a$;

axiom ax

(@abc:wff): $(a=>b=>c)> (a>b)-> (a>c)$;

axiom ax_3 (a b: wff): $ (~a - ~b) - (b - a) $;
axiom ax_mp (a b: wff): $a > b$>%a3>$b3;

pub theorem id (a: wff): $ a = a $ = '(ax_mp (ax_mp ax_2 ax_1) (! ax_1 _ $~a$));
def and (a b) = § ~(a » ~b) §;
infixl and: $/\$ prec 35;

def or (a b) = § ~a = b §$;
infixl or: $\/$ prec 30; 2B e =l
Mo quick Fixes available

theorem or_right: $b > a VvV b$="f :$_—>_—> _BE

30/46


https://youtu.be/A7WfrW7-ifw

Specifying x86
> x86-64 is the common name for Intel’s instruction set architecture (ISA) that
runs on most computers

31/46



Specifying x86
> x86-64 is the common name for Intel’s instruction set architecture (ISA) that
runs on most computers

> For this project I wrote down the specification of a decent chunk of x86-64

31/46



Specifying x86
> x86-64 is the common name for Intel’s instruction set architecture (ISA) that
runs on most computers

> For this project I wrote down the specification of a decent chunk of x86-64

This involves:

» The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM
and other operand bytes

> (This is approximately what an assembler does)

31/46



Specifying x86
> x86-64 is the common name for Intel’s instruction set architecture (ISA) that
runs on most computers

> For this project I wrote down the specification of a decent chunk of x86-64

This involves:

» The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM
and other operand bytes

> (This is approximately what an assembler does)
» The interpretation of each instruction into execution semantics

31/46



Specifying x86
> x86-64 is the common name for Intel’s instruction set architecture (ISA) that
runs on most computers

> For this project I wrote down the specification of a decent chunk of x86-64

This involves:

» The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM
and other operand bytes

> (This is approximately what an assembler does)
» The interpretation of each instruction into execution semantics

> This requires a model of the registers, instruction pointer, flags, memory, page
permissions, exception state

31/46



Specifying x86
> x86-64 is the common name for Intel’s instruction set architecture (ISA) that
runs on most computers

> For this project I wrote down the specification of a decent chunk of x86-64

This involves:

» The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM
and other operand bytes

> (This is approximately what an assembler does)
» The interpretation of each instruction into execution semantics

> This requires a model of the registers, instruction pointer, flags, memory, page
permissions, exception state

> To interpret IO, a model of the (Linux) operating system

31/46



Specifying x86
> x86-64 is the common name for Intel’s instruction set architecture (ISA) that
runs on most computers

> For this project I wrote down the specification of a decent chunk of x86-64

This involves:

» The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM
and other operand bytes

> (This is approximately what an assembler does)
» The interpretation of each instruction into execution semantics

> This requires a model of the registers, instruction pointer, flags, memory, page
permissions, exception state

> To interpret IO, a model of the (Linux) operating system

> We focus mainly on the possible inputs and outputs of the program, for simple
console applications like the MMO verifier

31/46



Specifying x86
> x86-64 is the common name for Intel’s instruction set architecture (ISA) that
runs on most computers

> For this project I wrote down the specification of a decent chunk of x86-64

This involves:

» The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM
and other operand bytes

> (This is approximately what an assembler does)
» The interpretation of each instruction into execution semantics

> This requires a model of the registers, instruction pointer, flags, memory, page
permissions, exception state

> To interpret IO, a model of the (Linux) operating system

> We focus mainly on the possible inputs and outputs of the program, for simple
console applications like the MMO verifier

» The ELF file format (the linux equivalent of .exe)
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Metamath C

> This is everything we need to state the correctness theorem for a compiled
program:

Program correctness

Program P is correct to specification T if for every initial state s € init(P), all
nondeterministic evaluations do not cause undefined behavior, and after reaching
a final state s ~»* ¢/, if s’ is a successful exit state and input_consumed(s’) = I and
output_produced(s’) = O, then T(I, O) is true.

» Red: definitions from x86.mmo

> Blue: the user specification
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> This is everything we need to state the correctness theorem for a compiled
program:

Program correctness

Program P is correct to specification T if for every initial state s € init(P), all
nondeterministic evaluations do not cause undefined behavior, and after reaching
a final state s ~»* ¢/, if s’ is a successful exit state and input_consumed(s’) = I and
output_produced(s’) = O, then T(I, O) is true.

» Red: definitions from x86.mmo

> Blue: the user specification

» The Metamath C compiler produces theorems of this form.
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Metamath C

» MMC is not a “general-purpose” programming language
> Someday, it can hope to be about as general purpose as C or Rust, but this is a
gargantuan effort for many reasons
» The niche MMC fills is writing executable programs which provably satisfy
some condition

> Most programs don’t need this property, but correctness is important to some
degree in almost every program, and (approximate) type correctness is
mainstream
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Programming languages have come a long way in terms of provable correctness

> Assembly: bare minimum type system required to make instructions
compilable

C: Typed pointers, structs

Java: Generic types, type polymorphism

Haskell: Algebraic data types

Rust: Linear types

Static analyzers: Value analysis, contract checking

vV v v V.V Yy

Lean: Dependent types, proof objects
» Metamath C

A type checker is just a simple theorem prover; the study of one naturally leads to
the other
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Examples: Procedures

» This is a function that takes two 32 bit integers and returns their sum,
wrapped to 32 bits

proc add2(x: u32, y: u32): u32 {
return (x + y) as u32;
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Examples: Procedures

» This is a function that takes two 32 bit integers and returns their sum,
wrapped to 32 bits

proc add2(x: u32, y: u32): u32 {
return (x + y) as u32;

}

> Supports multiple returns and dependent types for writing preconditions and
postconditions
proc deptypes(x: u32, _: x = 0): y: u32, sn((x + y) as u32) {

1, sn((x + 1) as u32)
}
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Examples: Tuples and pattern matching

» This function constructs and destructs some tuples. The sn(1), sn(2) return
type says that this function returns exactly the values 1 and 2

proc tuples(): sn(l), sn(2) {
let x: (nat, nat) := (1, 2);
let (one, two) := x;
sn(one), sn(two)

}
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Examples: Tuples and pattern matching

» This function constructs and destructs some tuples. The sn(1), sn(2) return
type says that this function returns exactly the values 1 and 2

proc tuples(): sn(l), sn(2) {
let x: (nat, nat) := (1, 3); // <- changed 2 to 3
let (one, two) := x;
sn(one), sn(two) // type error!

}
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Examples: Control flow

> After an if statement, you can capture the property’s truth value in a variable:

proc if_statement(x: nat) {
if h: x <10 {
// x: nat, h: x < 10
} else {
// x: nat, h: ~(x < 10)
}
}
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Examples: Control flow

> While loops and assignment:

proc while_loop() {
let b := true;
let h2 := while h: b {

// h: b

b <- false;
};
// h2: ~b
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Examples: Numeric types

» There are various fixed size integral types, as well as unbounded integer types

Tu=u8|ul6|u32|u64|nat|i8|il6|i32|i64|int]...
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Examples: Numeric types

» There are various fixed size integral types, as well as unbounded integer types

Tu=u8|ul6|u32|u64|nat|i8|il6|i32|i64|int]...

» Numeric operations yield their exact untruncated value, so the user must
decide how to cast the value back into range:

> (x + y): nat: don’t truncate at all (this can only be used in limited ways)

> (x + y) as u32: wrap the result

> (x + y): u32: make the type checker prove it is in range (usually only works if
the values of x and y are known)

> cast(x + vy, h): u32: prove that x + y < 2%

> cast(x + y): u32: assert that x + y < 22 and crash otherwise
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Separation logic

MMC’s type system includes the basic primitives of separation logic, for expressing
complex properties:

Type Concrete syntax Typehood predicate |a: —| Meaning

dx 1y, 10(x)  (ex x: 11, T2(%)) dx :1q,|a: 12(x) Existential quantification
Vx:1q,7o(x)  all x: 71. To(x) Vx:1q,|a: Ta(x) Universal quantification

1> Tp T -> Ty a:mT|—|a: 1 Non-separating implication

T1 T T) % T -~ Separating imp. (magic wand)

TL AT T1 && To W A W Non-separating conjunction

T1*To (t1, T2) ‘a.O 1T ‘* ‘ al:t ‘ Separating conjunction

1V Ty T || T a:ti1|Via: 1 Disjunction

-7 ~Ty —la:t] Negation
-0 £ |->v >0 Points-to assertion

le: 1] Typing assertion
|7 moved(T) [a- ] Persistent core of
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The main function

» The theorem to be proved by the MMC compiler depends on the return type
of the main() function:

proc main(): collatz_conjecture {
// if this program succeeds, then the collatz conjecture is true
assert(false) // ...not that I know how to write such a program!

}
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» MMO is a new system with not many users, and does not compare to
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The project is being developed as open source, and contributions are welcome
There are several MMO verifiers, written in C, Rust, Haskell
The MMC verifier for MMO is under construction

The MM1 proof assistant is fairly stable and has already been used for some
pretty big formalization work

v vyvyy

» The MMC compiler is mostly working for generating executable programs,
but is still very experimental

It is still a research project at this point, but I have every intention to grow this to
an industrial strength project eventually.

43/46
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On program synthesis

» MMC has a strong type system, and things that typecheck must follow their
functional specification

> Program synthesis is necessarily doing deductive verification

» What this language brings to the table is to take those high level proofs and
lower them to fully formal proofs about the resulting assembly code
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» Metamath is a really simple language which can express complex math

> But we can get the benefits without making things hard for users

» The MML1 proof assistant is my vision for how to marry a Metamath-like
backend to a Lean-like frontend, and you can play with it today

» The MMC language design is similar to a programming language with
contracts like Dafny / Why3, but unlike these the proofs aren’t just “skin
deep”, they are synthesized into a full proof at the low level, through the
entire compiler

> It still remains to be seen if these kind of languages are actually usable in
practice, but it could be a game-changer, bringing the task of writing formally
verified programs down to the level of the average proof assistant user.
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Resources

Metamath: http://us.metamath.org/

Metamath Zero: https://github.com/digama®/mmo

MMO Youtube tutorial: https://youtu.be/A7WfrW7-ifw
MMO thesis: https://digama®.github.io/mm0/thesis.pdf
Lean/mathlib: http://leanprover-community.github.io/

vVvyVvYyvVvyVvyy

Lean Zulip chat: https://leanprover.zulipchat.com/
> Ask me anything on Zulip, I'm there a lot

Thanks!
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