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Talk Sketch

❏ What is Program Synthesis ?
❏ Program Synthesis as Sequence Generation Task (with Karel as example)
❏ Pre-trained Language Models for complex code related tasks
❏ LLMs for code, tricks that help when fine-tuning is not an option 
❏ Anecdotes about ChatGPT



What is Program Synthesis ?

A Transformer 
model generating 
python code from 
natural language



What is Program Synthesis ?

Generate code (in some language) from suitable specifications (intent) 

Natural Language

Input-Output Examples

Code Smells and Properties

Traces/Demonstration

Another Formal Language

Python, C, C++, …

SQL, SPARQL ....

Custom Language:

FlashFill, Karel, …….



What is Program Synthesis ?



Neural Program Synthesis from Diverse 
Demonstration Videos, Sun et. al, 2018

What is Program Synthesis ?

Hierarchical Motion Understanding with Motion 
Programs, Kulal et. al, 2021



Explicit Enumeration and Search to Synthesize Programs

Program Space Representation

- Grammar to generate candidates
- Top Down v/s Bottom Up

Fast checking of equivalence 

Fast checking for incorrectness



Neural Networks for Program Synthesis  



How can use of Neural Networks help ? 

Represent Search Space

- Statistical Distribution of Program   

Represent Intent and Tasks

- Natural Language, Images, 

Represent Programs

- Predict Properties 
- Predict Execution
- Predict Correctness (Repair)
- Predict Equivalence 



Program Synthesis with Tree Structured Neural Architecture 

❏ Representation for every symbol and production rule
❏ Forward and Reverse NN for each production rule
❏ Partial Program Trees of Depth T
❏ Task representation (I/O pairs)  is concatenated at leafs  

Neuro-Symbolic 
Program 
Synthesis, 
Parisotto et. al, 
2017



Program Synthesis as Sequence Generation

LSTM for representation of Input, Output, Program Generation 

- 95 ASCII tokens for I and O
- 495 Program tokens for P
- Late Fusion: Predict program tokens after Max Pool
- Attention and Bi-Directional plays an important role 

RobustFill: Neural Program Learning under Noisy I/O, Devlin et. al, 2017



Primer on Attention in sequence-sequence models

Neural machine 
translation by 
jointly learning to 
align and 
translate, 
Bahdanau et. al, 
2017
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Program Synthesis for Karel using 
Sequence Generation  



Program Synthesis for Karel

Neural Program Meta-Induction, Devlin et. al, 2017

Scope Representation in Sequence
Conditionals:  c( <body> c)

If: i(  <body> i)
Else: e(  <body> e)
Repeat: r( and r)



Program Synthesis for Karel

Leveraging Grammer and Reinforcement Learning For Neural Program 
Synthesis, Devlin et. al, 2017

1. CNN to embed I/O example
2. Late Fusion as done in RobustFill
3. Task Embedding + Previous Token



Grammar constrained decoding 

Grammatical correctness can be used to apply 
masks on the tokens that can be selected at each 
step. 

Leveraging Grammar and Reinforcement Learning 
For Neural Program Synthesis, Devlin et. al, 2017

Beam Search



Neural generation of traces for program synthesis

Improving Neural Program Synthesis with Inferred 
Execution Traces, Shin et. al, 2018

Synthesize traces from the Input-Output States
Use Karel interpreter to replay actions and find out corresponding intermediate states.
Use Bi-LSTM to get an embedding of trace, state interleaved, 
Continue using late fusion



Latent Execution for Neural Program Synthesis

❏ LSTM to represent Intermediate State s.t. If given as input to remaining partial 
program it leads to same output. 

❏ Use updated states for synthesis (work for snippets of C as well)

Latent Execution for Neural 
Program Synthesis, Chen et. 
al, 2021



Neural Debugger

Train an LSTM to debug the program generated by the synthesizer LSTM

Debugging Language: KEEP, DELETE, INSERT, REPLACE

Synthesize, Execute and Debug: Learning to Repair for 
Neural Program Synthesis, Gupta et. al, 2021



Transformers for the Synthesizer

Transformer Decoder for Synthesizer

Performance gain greater on longer programs

Are Transformers All 
That Karel Needs, 
Garg et. al, 2021



Why Transformers?

■ Infinite Reference
■ Non Sequential Processing
■ Parallelism (multi GPU)
■ Less Complex Computations

Source: https://theaisummer.com/transformer/

Attention is all you need, Vaswani et. al.  (2017)

https://arxiv.org/abs/1706.03762
https://papers.nips.cc/paper/7181-attention-is-all-you-need


Code Generation using Pre-trained 
(Fine-tunable) Language Models 



Tasks

CodeXGLUE, A machine learning benchmark dataset for code understanding 
and generation, Chen et. al, 2021



Metrics of Performance 

- Exact Match 
- Program is grammatically correct 
- Program satisfies the I/O example used to specify intent and can generalize to 

held out examples as well. 

 Other notions of equivalence haven’t been used (atleast not consistently):

- Similar logic is being employed 
- Similar usage of resources 



Structured Information about the Code

What:

❏ Abstract Syntax Tree
❏ Control flow 
❏ Data flow

How: 

❏ Linearize use preorder traversal, path decomposition, etc
❏ Structured pre-training tasks 
❏ Overlaying the embedding space



Idea behind using pre-trained LMs



Self Supervision Tasks in NLP



Self-Supervision tasks for pretraining code LMs

Code BERT Encoder Only MLM, Replaced Token Detection

Code GPT Decode Only Next token prediction

Transcoder Encoder Only Crosslingual MLM, Denoising AE, Back Translation

PL BART Encoder - Decoder MLM, Token Deletion, Token Infilling (masked span)

Code T5 Encoder - Decoder Masked Span, Identifier Tagging, Identifier Masking, Dual 
Generation

CodeGen Decoder only Next Token Prediction



Code Generation using Pre-trained 
Large Language Models 



Large Language Models

- Size usually in hundreds of billions of parameters 
- Lambda 135 billion, GPT3 - 175 billion, Megatron 530 billion

- Trained for multitasking, prompt/prefix based task selection
- Shows in Context learning and other emergent capabilities.

Challenges:
- Generally too large for fine 

tuning 
- Model parameters not 

openly available
- Access to Model itself is 

restricted to the APIs



Non Invasive Generation improvements for LLMs

Attention is all you need, Vaswani et.al (2017)
Chain of Thought prompting elicits reasoning in large language models, Wei et.al (2022)

Comparable to PBE Comparable to Execution 
traces

https://papers.neurips.cc/paper/7181-attention-is-all-you-need.pdf
https://arxiv.org/abs/2201.11903


CoT Example - GPT3



Can Large Language models do zero shot coding?



Performance of LLMs in Code Generation

Text generation metrics such as Bleu 
score correlates weakly with program 

performance.

Percentage of samples solved increases 
with model size and shows no sign of 

flattening.

Factors improving performance

■ Model Size
■ Prompt Quality
■ Few-shot example relevance
■ Human - Model alignment
■ Sampling Strategy / Post 

Processing

Program synthesis using Large Language models, Austin. Et.al (2021)
Evaluating Large Language Models Trained on Code, Chen Et. al (2021)

■ Evaluated on  MBPP & MathQA datasets
■ Program synthesis tasks has to be 

approached and evaluated differently than 
text generation

Codex

https://arxiv.org/abs/2108.07732
https://arxiv.org/pdf/2107.03374.pdf


Reliable code generation using LLMs

Context 
Specification

Pre trained
LLM

Output Selection 
+

Post Processing

■ Relevance to the task
■ Context length
■ Few shot selection 

strategy
■ Decomposing and 

planning through 
Sketching.

■ Sampling Strategies
■ Selection and scoring 

strategies
■ Correction / Post 

Processing

What can we control?



Context Specification

Example Prompt from an API reference:

Load a feather-format object from the file path.
pandas.read_feather(path, columns=None, use_threads=True, storage_options=None)

JigSaw: Large Language models meet program synthesis, Jain et.al (2021)

● Prompt Repository
○ Public API Documentations
○ Code Summaries
○ Few shot examples
○ Private Libraries
○ Schema Information

Synchromesh: Reliable Code Generation From Pre-Trained Language Models, Poesia et.al, 2022

TST - Target Similarity Tuning,  CSD - Constrained semantic Decoding

https://arxiv.org/pdf/2112.02969.pdf
https://arxiv.org/abs/2201.11227


Context Selection

JigSaw: Large Language models meet program synthesis, Jain et.al (2021)

● Context selection using Similarity with Query
○ TF-IDF
○ Embedding distance
○ TST - AST Edit distance of Programs

Synchromesh: Reliable Code Generation From Pre-Trained Language Models, Poesia et.al, 2022

TST - Target Similarity Tuning,  CSD - Constrained semantic Decoding

https://arxiv.org/pdf/2112.02969.pdf
https://arxiv.org/abs/2201.11227


Target Specific Tuning

Select count(*) 
from employee 
where address=””

Find the count of 
employees with no 
address recorded:

select count(*) 
from customers 
where 
len(address)<3

Find the count of 
customers with 
length of address 
shorter than 3 
characters

AST1 AST2

AST Edit 
distance

TST model

● Model learns from random 
pairs of positive and negative 
examples from training set.

● Natural language queries are 
the strings to match and the 
AST edit distance is the 
expected similarity score. 

● Once trained we have a way to 
compare NL queries based on 
the target they achieve.



Handling Large context repositories

Node: Corresponds to a chunk of text from a Document

Image from GPT3-Index

- Large documentations, API 
references, manuals etc. can be 
splitted into meaningful chunks and 
vectorized using embeddings from 
GPT3, BERT etc.

- Store the embeddings in Vector 
Databases

- Retrieve based on Query similarity.

Tools like GPT3-Index, Faiss, Weaviate 
can help.

https://gpt-index.readthedocs.io/en/latest/_images/vector_store_query.png


Output Sampling strategies

Program synthesis using Large Language models, Austin. Et.al (2021)

● Beam Search may not be the right 
choice

● Not every sample will be valid
● Grammar / Execution based scoring 

and selection can reduce errors

https://arxiv.org/abs/2108.07732


Grammar based Guidance

Task : NL → SQL (Spider, CoSQL)

■ Constrain Autoregressive decoding 
through incremental parsing

■ Filter output tokens based on SQL 
Grammar & Database Schema.

■ Lexing, Parsing with and without 
Guards.

PICARD: Parsing Incrementally for Constrained Auto Regressive Decoding from Language models,  Scholak (2022)

https://arxiv.org/abs/2109.05093


Grammar Based Guidance

Performance similar to SOTA even with 
smaller models.

PICARD: Parsing Incrementally for Constrained Auto Regressive Decoding from Language models,  Scholak (2022)

* A dagger (†) indicates use of database content, otherwise schema only.

https://arxiv.org/abs/2109.05093


Output Guidance Strategies

TST - Target Similarity Tuning
CSD - Constrained semantic Decoding

Token by token decoding where the set of next 
tokens are given by a constraint engine. 

The constraint might be based on Syntax or 
Semantics of the target.

Synchromesh: Reliable Code Generation From Pre-Trained Language Models, Poesia et.al, 2022

https://arxiv.org/abs/2201.11227


Output Correction methods - Rule Based

Output 
Program

Context Variable parser

Potential 
Variables

LLM

Corrected 
Program

Variable Corrections

Output 
Program

Context LLM

API Signature 
from 

documentations

Argument 
Correction

Corrected 
Program

Argument Corrections

JigSaw: Large Language models meet program synthesis, Jain et.al (2021)

https://arxiv.org/pdf/2112.02969.pdf


Output Corrections - Learnable Methods

JigSaw: Large Language models meet program synthesis, Jain et.al (2021)

Wrong AST

Correct AST

Neural 
Debugger

Input

Label

This eventually becomes a part 
of post processing improving 
the accuracy over time

https://arxiv.org/pdf/2112.02969.pdf


Addressing Proprietary Libraries/APIs

LM models are mostly unaware of proprietary libraries/apis: Most enterprise projects will use proprietary 
libraries which may have never been exposed to the Models. This increases the chances of failure in retrieving the 
right program for the task.

Figures from the paper “When Language model meets Private Library” 

When Language Model Meets Private Library Zan, et.al (2022)

https://arxiv.org/abs/2210.17236

