
Program Synthesis using Neural
Sequence Generation

Shirish Karande and Ganesh Prasath Ramani,
Tata Consultancy Services - Research

Talk Sketch

❏ What is Program Synthesis ?
❏ Program Synthesis as Sequence Generation Task (with Karel as example)
❏ Pre-trained Language Models for complex code related tasks
❏ LLMs for code, tricks that help when fine-tuning is not an option
❏ Anecdotes about ChatGPT

What is Program Synthesis ?

A Transformer
model generating
python code from
natural language

What is Program Synthesis ?

Generate code (in some language) from suitable specifications (intent)

Natural Language

Input-Output Examples

Code Smells and Properties

Traces/Demonstration

Another Formal Language

Python, C, C++, …

SQL, SPARQL

Custom Language:

FlashFill, Karel, …….

What is Program Synthesis ?

Neural Program Synthesis from Diverse
Demonstration Videos, Sun et. al, 2018

What is Program Synthesis ?

Hierarchical Motion Understanding with Motion
Programs, Kulal et. al, 2021

Explicit Enumeration and Search to Synthesize Programs

Program Space Representation

- Grammar to generate candidates
- Top Down v/s Bottom Up

Fast checking of equivalence

Fast checking for incorrectness

Neural Networks for Program Synthesis

How can use of Neural Networks help ?

Represent Search Space

- Statistical Distribution of Program

Represent Intent and Tasks

- Natural Language, Images,

Represent Programs

- Predict Properties
- Predict Execution
- Predict Correctness (Repair)
- Predict Equivalence

Program Synthesis with Tree Structured Neural Architecture

❏ Representation for every symbol and production rule
❏ Forward and Reverse NN for each production rule
❏ Partial Program Trees of Depth T
❏ Task representation (I/O pairs) is concatenated at leafs

Neuro-Symbolic
Program
Synthesis,
Parisotto et. al,
2017

Program Synthesis as Sequence Generation

LSTM for representation of Input, Output, Program Generation

- 95 ASCII tokens for I and O
- 495 Program tokens for P
- Late Fusion: Predict program tokens after Max Pool
- Attention and Bi-Directional plays an important role

RobustFill: Neural Program Learning under Noisy I/O, Devlin et. al, 2017

Primer on Attention in sequence-sequence models

Neural machine
translation by
jointly learning to
align and
translate,
Bahdanau et. al,
2017

 Encoder Decoder

Context Vector

s(i-1)

e1

e2

e3

e4

a1

a2

a3

a4

ci

Score Weights

Program Synthesis for Karel using
Sequence Generation

Program Synthesis for Karel

Neural Program Meta-Induction, Devlin et. al, 2017

Scope Representation in Sequence
Conditionals: c(<body> c)

If: i(<body> i)
Else: e(<body> e)
Repeat: r(and r)

Program Synthesis for Karel

Leveraging Grammer and Reinforcement Learning For Neural Program
Synthesis, Devlin et. al, 2017

1. CNN to embed I/O example
2. Late Fusion as done in RobustFill
3. Task Embedding + Previous Token

Grammar constrained decoding

Grammatical correctness can be used to apply
masks on the tokens that can be selected at each
step.

Leveraging Grammar and Reinforcement Learning
For Neural Program Synthesis, Devlin et. al, 2017

Beam Search

Neural generation of traces for program synthesis

Improving Neural Program Synthesis with Inferred
Execution Traces, Shin et. al, 2018

Synthesize traces from the Input-Output States
Use Karel interpreter to replay actions and find out corresponding intermediate states.
Use Bi-LSTM to get an embedding of trace, state interleaved,
Continue using late fusion

Latent Execution for Neural Program Synthesis

❏ LSTM to represent Intermediate State s.t. If given as input to remaining partial
program it leads to same output.

❏ Use updated states for synthesis (work for snippets of C as well)

Latent Execution for Neural
Program Synthesis, Chen et.
al, 2021

Neural Debugger

Train an LSTM to debug the program generated by the synthesizer LSTM

Debugging Language: KEEP, DELETE, INSERT, REPLACE

Synthesize, Execute and Debug: Learning to Repair for
Neural Program Synthesis, Gupta et. al, 2021

Transformers for the Synthesizer

Transformer Decoder for Synthesizer

Performance gain greater on longer programs

Are Transformers All
That Karel Needs,
Garg et. al, 2021

Why Transformers?

■ Infinite Reference
■ Non Sequential Processing
■ Parallelism (multi GPU)
■ Less Complex Computations

Source: https://theaisummer.com/transformer/

Attention is all you need, Vaswani et. al. (2017)

https://arxiv.org/abs/1706.03762
https://papers.nips.cc/paper/7181-attention-is-all-you-need

Code Generation using Pre-trained
(Fine-tunable) Language Models

Tasks

CodeXGLUE, A machine learning benchmark dataset for code understanding
and generation, Chen et. al, 2021

Metrics of Performance

- Exact Match
- Program is grammatically correct
- Program satisfies the I/O example used to specify intent and can generalize to

held out examples as well.

 Other notions of equivalence haven’t been used (atleast not consistently):

- Similar logic is being employed
- Similar usage of resources

Structured Information about the Code

What:

❏ Abstract Syntax Tree
❏ Control flow
❏ Data flow

How:

❏ Linearize use preorder traversal, path decomposition, etc
❏ Structured pre-training tasks
❏ Overlaying the embedding space

Idea behind using pre-trained LMs

Self Supervision Tasks in NLP

Self-Supervision tasks for pretraining code LMs

Code BERT Encoder Only MLM, Replaced Token Detection

Code GPT Decode Only Next token prediction

Transcoder Encoder Only Crosslingual MLM, Denoising AE, Back Translation

PL BART Encoder - Decoder MLM, Token Deletion, Token Infilling (masked span)

Code T5 Encoder - Decoder Masked Span, Identifier Tagging, Identifier Masking, Dual
Generation

CodeGen Decoder only Next Token Prediction

Code Generation using Pre-trained
Large Language Models

Large Language Models

- Size usually in hundreds of billions of parameters
- Lambda 135 billion, GPT3 - 175 billion, Megatron 530 billion

- Trained for multitasking, prompt/prefix based task selection
- Shows in Context learning and other emergent capabilities.

Challenges:
- Generally too large for fine

tuning
- Model parameters not

openly available
- Access to Model itself is

restricted to the APIs

Non Invasive Generation improvements for LLMs

Attention is all you need, Vaswani et.al (2017)
Chain of Thought prompting elicits reasoning in large language models, Wei et.al (2022)

Comparable to PBE Comparable to Execution
traces

https://papers.neurips.cc/paper/7181-attention-is-all-you-need.pdf
https://arxiv.org/abs/2201.11903

CoT Example - GPT3

Can Large Language models do zero shot coding?

Performance of LLMs in Code Generation

Text generation metrics such as Bleu
score correlates weakly with program

performance.

Percentage of samples solved increases
with model size and shows no sign of

flattening.

Factors improving performance

■ Model Size
■ Prompt Quality
■ Few-shot example relevance
■ Human - Model alignment
■ Sampling Strategy / Post

Processing

Program synthesis using Large Language models, Austin. Et.al (2021)
Evaluating Large Language Models Trained on Code, Chen Et. al (2021)

■ Evaluated on MBPP & MathQA datasets
■ Program synthesis tasks has to be

approached and evaluated differently than
text generation

Codex

https://arxiv.org/abs/2108.07732
https://arxiv.org/pdf/2107.03374.pdf

Reliable code generation using LLMs

Context
Specification

Pre trained
LLM

Output Selection
+

Post Processing

■ Relevance to the task
■ Context length
■ Few shot selection

strategy
■ Decomposing and

planning through
Sketching.

■ Sampling Strategies
■ Selection and scoring

strategies
■ Correction / Post

Processing

What can we control?

Context Specification

Example Prompt from an API reference:

Load a feather-format object from the file path.
pandas.read_feather(path, columns=None, use_threads=True, storage_options=None)

JigSaw: Large Language models meet program synthesis, Jain et.al (2021)

● Prompt Repository
○ Public API Documentations
○ Code Summaries
○ Few shot examples
○ Private Libraries
○ Schema Information

Synchromesh: Reliable Code Generation From Pre-Trained Language Models, Poesia et.al, 2022

TST - Target Similarity Tuning, CSD - Constrained semantic Decoding

https://arxiv.org/pdf/2112.02969.pdf
https://arxiv.org/abs/2201.11227

Context Selection

JigSaw: Large Language models meet program synthesis, Jain et.al (2021)

● Context selection using Similarity with Query
○ TF-IDF
○ Embedding distance
○ TST - AST Edit distance of Programs

Synchromesh: Reliable Code Generation From Pre-Trained Language Models, Poesia et.al, 2022

TST - Target Similarity Tuning, CSD - Constrained semantic Decoding

https://arxiv.org/pdf/2112.02969.pdf
https://arxiv.org/abs/2201.11227

Target Specific Tuning

Select count(*)
from employee
where address=””

Find the count of
employees with no
address recorded:

select count(*)
from customers
where
len(address)<3

Find the count of
customers with
length of address
shorter than 3
characters

AST1 AST2

AST Edit
distance

TST model

● Model learns from random
pairs of positive and negative
examples from training set.

● Natural language queries are
the strings to match and the
AST edit distance is the
expected similarity score.

● Once trained we have a way to
compare NL queries based on
the target they achieve.

Handling Large context repositories

Node: Corresponds to a chunk of text from a Document

Image from GPT3-Index

- Large documentations, API
references, manuals etc. can be
splitted into meaningful chunks and
vectorized using embeddings from
GPT3, BERT etc.

- Store the embeddings in Vector
Databases

- Retrieve based on Query similarity.

Tools like GPT3-Index, Faiss, Weaviate
can help.

https://gpt-index.readthedocs.io/en/latest/_images/vector_store_query.png

Output Sampling strategies

Program synthesis using Large Language models, Austin. Et.al (2021)

● Beam Search may not be the right
choice

● Not every sample will be valid
● Grammar / Execution based scoring

and selection can reduce errors

https://arxiv.org/abs/2108.07732

Grammar based Guidance

Task : NL → SQL (Spider, CoSQL)

■ Constrain Autoregressive decoding
through incremental parsing

■ Filter output tokens based on SQL
Grammar & Database Schema.

■ Lexing, Parsing with and without
Guards.

PICARD: Parsing Incrementally for Constrained Auto Regressive Decoding from Language models, Scholak (2022)

https://arxiv.org/abs/2109.05093

Grammar Based Guidance

Performance similar to SOTA even with
smaller models.

PICARD: Parsing Incrementally for Constrained Auto Regressive Decoding from Language models, Scholak (2022)

* A dagger (†) indicates use of database content, otherwise schema only.

https://arxiv.org/abs/2109.05093

Output Guidance Strategies

TST - Target Similarity Tuning
CSD - Constrained semantic Decoding

Token by token decoding where the set of next
tokens are given by a constraint engine.

The constraint might be based on Syntax or
Semantics of the target.

Synchromesh: Reliable Code Generation From Pre-Trained Language Models, Poesia et.al, 2022

https://arxiv.org/abs/2201.11227

Output Correction methods - Rule Based

Output
Program

Context Variable parser

Potential
Variables

LLM

Corrected
Program

Variable Corrections

Output
Program

Context LLM

API Signature
from

documentations

Argument
Correction

Corrected
Program

Argument Corrections

JigSaw: Large Language models meet program synthesis, Jain et.al (2021)

https://arxiv.org/pdf/2112.02969.pdf

Output Corrections - Learnable Methods

JigSaw: Large Language models meet program synthesis, Jain et.al (2021)

Wrong AST

Correct AST

Neural
Debugger

Input

Label

This eventually becomes a part
of post processing improving
the accuracy over time

https://arxiv.org/pdf/2112.02969.pdf

Addressing Proprietary Libraries/APIs

LM models are mostly unaware of proprietary libraries/apis: Most enterprise projects will use proprietary
libraries which may have never been exposed to the Models. This increases the chances of failure in retrieving the
right program for the task.

Figures from the paper “When Language model meets Private Library”

When Language Model Meets Private Library Zan, et.al (2022)

https://arxiv.org/abs/2210.17236

